• Title/Summary/Keyword: interference space reuse

Search Result 8, Processing Time 0.023 seconds

Interference Space Reuse and the Adoption Strategy through QoS Constraints in Three-Cell Downlink MIMO Interference Channels (3-Cell 하향링크 MIMO 간섭 채널에서의 간섭 공간 재활용 및 QoS Constraint에 따른 그 적용 방안)

  • Yoon, Jangho;Lee, Hwang Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1093-1105
    • /
    • 2012
  • We propose an interference space reuse (ISR) algorithm for the MU-MIMO design in 3-cell downlink interference channels. Also, we provide a strategy for the adoption of the ISR scheme in the cellular network. In the multicell interference channels, the cell edge users may undergo severe interferences and their signals should be protected from the interferers for reliable transmissions. However, the intra cell users do not only experience small interferences but also they require small transmission power for stable communication. We provide a vector design algorithm based on ISR, where intra cell users are served through reusing the cell edge users' interference space. The performance enhancement reaches 20% compared to the fractional frequency reuse (FFR) scheme combined with IA through the scheduling between the cell edge users and the intra cell users. Also, it can be used to enhance the cell edge throughput when the quality of service (QoS) requirements of the intra cell users are fixed.

Performance of 3-Dimensional Frequency Reuse Patterns and Their Application to Carrier-Aggregated Systems (3차원 주파수 재사용 패턴의 성능 및 반송파 결합을 사용하는 시스템으로의 적용 방안)

  • Sung, Jihoon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1256-1263
    • /
    • 2012
  • Assigning different frequency resources among adjacent cells, namely the frequency reuse technique can be utilized to mitigate intercell interference, which is a major cause of performance degradation in cellular systems. Since most of conventional frequency reuse patterns are limited to the two-dimensional environment, the research for the three-dimensional frequency reuse would be beneficial especially for the implementation of femto cells in downtown office buildings. We propose frequency reuse patterns in three-dimensional space and evaluate their performance of each pattern in terms of channel capacity. In particular, we show that the proposed three-dimensional frequency reuse patterns can be applied for carrier-aggregated transmission of LTE-Advanced systems. The performance of the proposed patterns is evaluated using computer simulation.

Multibeam Satellite Frequency/Time Duality Study and Capacity Optimization

  • Lei, Jiang;Vazquez-Castro, Maria Angeles
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.472-480
    • /
    • 2011
  • In this paper, we investigate two new candidate transmission schemes, non-orthogonal frequency reuse (NOFR) and beam-hopping (BH). They operate in different domains (frequency and time/space, respectively), and we want to know which domain shows overall best performance. We propose a novel formulation of the signal-to-interference plus noise ratio (SINR) which allows us to prove the frequency/time duality of these schemes. Further, we propose two novel capacity optimization approaches assuming per-beam SINR constraints in order to use the satellite resources (e.g., power and bandwidth) more efficiently. Moreover, we develop a general methodology to include technological constraints due to realistic implementations, and obtain the main factors that prevent the two technologies dual of each other in practice, and formulate the technological gap between them. The Shannon capacity (upper bound) and current state-of-the-art coding and modulations are analyzed in order to quantify the gap and to evaluate the performance of the two candidate schemes. Simulation results show significant improvements in terms of power gain, spectral efficiency and traffic matching ratio when comparing with conventional systems, which are designed based on uniform bandwidth and power allocation. The results also show that BH system turns out to show a less complex design and performs better than NOFR system specially for non-real time services.

Generalized Outage Probability of STTD System in Rayleigh Fading Channel (레일레이 페이딩 채널에서 STTD 시스템의 일반화된 오수신확률)

  • 남우춘;한영열
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1025-1031
    • /
    • 2001
  • In this paper, we derive the outage probability of cellular mobile system with STTB(Space Time Transmitter Diversity) scheme where the received radio signals and interferers experience Rayleigh fading and AWGN. The new probability density function of L independent identically distributed interferers is derived using Laplace transforms. We express the probability of outage as a function of the average-signal to average-interference power ratio and the signal to noise ratio. In addition, the frequency reuse distance which is one of the key parameters in the design of cellular systems is analyzed.

  • PDF

Joint Spatial Division and Reuse for Maximizing Network Throughput in Densely-Deployed Massive MIMO WLANs (고밀집 환경에서 대용량 MIMO WLAN의 네트워크 용량 최대화를 위한 결합 공간 분할 및 재사용 기법)

  • Choi, Kyung Jun;Kim, Kyung Jun;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.469-477
    • /
    • 2015
  • In this paper, joint spatial division and reuse (JSDR) scheme is proposed for maximizing network throughput in densely-deployed wireless local area networks equipped with massive antenna array. The proposed JSDR scheme divides the massive spatial space into two subspaces: one is for suppressing the interference from the neighboring access points and another is for sensing the carrier sensing and transmitting the information-bearing signals to intended stations. By using computer simulation, the proposed JSDR can provide 133% higher network throughput, compared to the carrier sensing technique defined in the IEEE 802.11 standard so that the proposed JSDR is suitable for the next generation WLAN systems.

Geolocation Spectrum Database Assisted Optimal Power Allocation: Device-to-Device Communications in TV White Space

  • Xue, Zhen;Shen, Liang;Ding, Guoru;Wu, Qihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4835-4855
    • /
    • 2015
  • TV white space (TVWS) is showing promise to become the first widespread practical application of cognitive technology. In fact, regulators worldwide are beginning to allow access to the TV band for secondary users, on the provision that they access the geolocation database. Device-to-device (D2D) can improve the spectrum efficiency, but large-scale D2D communications that underlie TVWS may generate undesirable interference to TV receivers and cause severe mutual interference. In this paper, we use an established geolocation database to investigate the power allocation problem, in order to maximize the total sum throughput of D2D links in TVWS while guaranteeing the quality-of-service (QoS) requirement for both D2D links and TV receivers. Firstly, we formulate an optimization problem based on the system model, which is nonconvex and intractable. Secondly, we use an effective approach to convert the original problem into a series of convex problems and we solve these problems using interior point methods that have polynomial computational complexity. Additionally, we propose an iterative algorithm based on the barrier method to locate the optimal solution. Simulation results show that the proposed algorithm has strong performance with high approximation accuracy for both small and large dimensional problems, and it is superior to both the active set algorithm and genetic algorithm.

A Multi-Dimensional Radio Resource Scheduling Scheme for MIMO-OFDM Wireless Systems

  • Li, Lei;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.401-409
    • /
    • 2006
  • Orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) technologies provide additional dimensions of freedom with spectral and spatial resources for radio resource management. Multi-dimensional radio resource management has recently been identified to exploit the full dimensions of freedom for more flexible and efficient utilization of scarce radio spectrum while provide diverse quality of service (QoS) guarantees. In this work, a multi-dimensional radio resource scheduling scheme is proposed to achieve above goals in hybrid orthogonal frequency division multiple access (OFDMA) and space division multiple access (SDMA) systems. Cochannel interference (CCI) introduced by frequency reuse under SDMA is eliminated by frequency division and time division between highly interfered users. This scheme maximizes system throughput subjected to the minimum data rate guarantee. for heterogeneous users and transmit power constraint. By numerical examples, system throughput and fairness superiority of the our scheduling scheme are verified.

Coordinated Cognitive Tethering in Dense Wireless Areas

  • Tabrizi, Haleh;Farhadi, Golnaz;Cioffi, John Matthew;Aldabbagh, Ghadah
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.314-325
    • /
    • 2016
  • This paper examines the resource gain that can be obtained from the creation of clusters of nodes in densely populated areas. A single node within each such cluster is designated as a "hotspot"; all other nodes then communicate with a destination node, such as a base station, through such hotspots. We propose a semi-distributed algorithm, referred to as coordinated cognitive tethering (CCT), which clusters all nodes and coordinates hotspots to tether over locally available white spaces. CCT performs the following these steps: (a) groups nodes based on a modified k-means clustering algorithm; (b) assigns white-space spectrum to each cluster based on a distributed graph-coloring approach to maximize spectrum reuse, and (c) allocates physical-layer resources to individual users based on local channel information. Unlike small cells (for example, femtocells and WiFi), this approach does not require any additions to existing infrastructure. In addition to providing parallel service to more users than conventional direct communication in cellular networks, simulation results show that CCT can increase the average battery life of devices by 30%, on average.