• Title/Summary/Keyword: interference averaging effect

Search Result 4, Processing Time 0.019 seconds

An Analysis on the State-Dependent Nature of DS/SSMA Unslotted ALOHA

  • Park Seong-Yong;Lee Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.220-227
    • /
    • 2006
  • In this paper, we present a novel approach to analyze the throughput of direct-sequence spread spectrum multiple access (DS/SSMA) unslotted ALOHA system. In the unslotted system, the departure rate of interfering transmissions is proportional to the number of current interferers that can be regarded as the system state. In order to model this state-dependency, we introduce a two-dimensional state transition model that describes the state transition of the system. This model provides a more rigorous analysis tool for the DS/SSMA unslotted ALOHA systems with both fixed and variable packet lengths. Numerical results reveal that this analysis yields an accurate system performance that coincides with the simulation results. Throughout the analysis we have discovered that the state-dependency of the departure rate causes interference averaging effect in the unslotted system and that this effect yields a higher throughput for the unslotted system than for the slotted system when supported by a strong channel coding.

Cross-Correlation Eliminated Beamforming Based on the DOA Estimation of Interference using Correlation Matrix (상관행렬로부터 간섭신호 도달각을 추정하여 상호상관 성분을 제거하는 빔형성 방법)

  • Ryu, Kil-Hyen;Hong, Jae-Keun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.18-26
    • /
    • 2006
  • In this paper, we propose new beamforming algorithm which overcomes signal cancellation effect even high cross correlation existing between target and interfering signal. Using the proposed method, we show that direction of arrival (DOA) of interfering signal can be estimated using correlation matrix and the cross-correlation can be eliminated in the correlation matrix of input signal. The proposed method gives high performance enhancement compared with the spatial averaging method in our computer simulation results.

A Study on Multiband FTN Method for Improving Throughput Efficiency (전송 효율 향상을 위한 다중 밴드 FTN 기법 연구)

  • Seo, Jung-Hyun;Baek, Chang-Uk;Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.3
    • /
    • pp.235-240
    • /
    • 2018
  • FTN method which transmits signals faster the Nyquist rate is representative method for improving throughput efficiency sacrificed performance due to inter-symbol interference. To compensate performance loss, in this paper, we propose a multiband FTN method which split the coded bits into several bands and transmits signals applying FTN method. As coded bits are being assigned different bands, number of samples per bit of each band is increased, it induced performance improvement by noise averaging effect. In the simulations, compared the performance of single band FTN method and multiband FTN method when the interference rate is 25%. The results of simulation show the performance of proposed method is better than that of single band FTN one by 0.3dB~0.5dB.

An improved frequency offset estimation technique for an OFDM system (OFDM 시스템을 위한 개선된 주파수 옵셋 추정 기법)

  • 최종호;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1270-1281
    • /
    • 1998
  • Frequency offset in an orthogonal frequency division multiplexing (OFDM) system is known to cause the inter-channel interference (ICI), amplitude and phase distortion of a received signal, resulting in a severe performance degradation of the total system. In this paper, we propose an improved pilot-based masimum likelihood frequency offset estimation technique, which uses the predefined sync-subchannels, and derive the error performance of the proposed frequency offset estimator analytically. The proposed technique improves the performance of the frequency offset estimator by adding up the frequency offset caused by coherent phase changes and averaging out the effect caused by random phase error. It is confirmed by computer simulations that the upper bound of error variance for the proposed frequency offset estimator analytically derived in this paper is correct, and that the proposed estimator has better performance than the previous ones in terms of error variance, tracking range, and time-varying characteristics of a channel.

  • PDF