• 제목/요약/키워드: interfacial boundary estimation

검색결과 8건 처리시간 0.024초

Interfacial Boundary Estimation in Stratified Flow of Two Immiscible Liquids Using Hybrid-type Fourier Series

  • Kim, Bong Seok;Choi, Bong-Yeol;Kim, Kyung Youn
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.463-470
    • /
    • 2014
  • In stratified flows of two immiscible liquids, due to the vibration in a pipe, the shape of the interface is not always periodic and it causes the different end points of the interfacial boundary. In this case the performance is not good. To solve this, in this paper, the hybrid-type Fourier series is proposed, which consists of both the polynomial and the trigonometric terms. Under the stationary interfacial boundary during acquiring a full set of voltage data, the performance of the proposed method is evaluated through the numerical experiments. The results show that the proposed method performs better than the conventional Fourier series in estimating the interfacial boundary.

Boundary estimation in electrical impedance tomography with multi-layer neural networks

  • Kim, Jae-Hyoung;Jeon, Hae-Jin;Choi, Bong-Yeol;Lee, Seung-Ha;Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.40-45
    • /
    • 2004
  • This work presents a boundary estimation approach in electrical impedance imaging for binary-mixture fields based on a parallel structured multi-layer neural network. The interfacial boundaries are expressed with the truncated Fourier series and the unknown Fourier coefficients are estimated with the parallel structure of multi-layer neural network. Results from numerical experiments shows that the proposed approach is insensitive to the measurement noise and has a strong possibility in the visualization of binary mixtures for a real time monitoring.

  • PDF

용탕단조시 가압력에 따른 계면열전달계수의 변화 (Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process)

  • 김진수;안재영;한요섭;이호인;홍준표
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

ULTRASONIC DETECTION OF INTERFACE CRACK IN ADHESIVELY BONDED DCB JOINTS

  • Chung, N.-Y.;Park, S.-I.;Lee, M.-D.;Park, C.-H.
    • International Journal of Automotive Technology
    • /
    • 제3권4호
    • /
    • pp.157-163
    • /
    • 2002
  • It is well recognized that the ultrasonic method is one of the most common and reliable nondestructive testing (NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interfacial crack length in the adhesively bonded joints of double-cantilever beam (DCB). An optimal condition of transmission coefficients and experimental accuracy by the ultrasonic method in the adhesively bonded joints have been investigated and discussed. The experimental values are in good agreement with the computed results by boundary element method (BEM) and Ripling's equation.

초음파 탐상법을 이용한 접착이음에 대한 계면균열의 검출 (Detection of Interface Crack Using Ultrasonic Method in Adhesively Bonded Joints)

  • 정남용;이명대;박성일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.97-102
    • /
    • 2000
  • It is well recognized that the ultrasonic methods is one of the most common and reliable nondestructive testing(NDT) methods for the quantitative estimation of defects in welded structures. However, NDT techniques applying for adhesively bonded joints have not been clearly established yet. In this paper, the detection of interface crack by the ultrasonic method was applied for the measurement of interfacial crack length in the adhesively bonded joints of double-cantilever beam(DCB). The optimum condition of transmission coefficients in the adhesively bonded joints and it's experimental accuracy by the ultrasonic method have been investigated. The experimental values are in good agreement with the computed results by boundary element method(BEM) and Ripling's equation.

  • PDF

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF