• Title/Summary/Keyword: interfacial analysis

Search Result 634, Processing Time 0.033 seconds

Study on Growth Optimization of InAs/GaSb Strained-Layer Superlattice Structures by High-Resolution XRD Analysis (고분해능 XRD 분석에 의한 InAs/GaSb 응력초격자 구조의 성장 최적화 연구)

  • Kim, J.O.;Shin, H.W.;Choe, J.W.;Lee, S.J.;Kim, C.S.;Noh, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.245-253
    • /
    • 2009
  • For the growth optimization of InAs/GaSb (8/8-ML) strained-layer superlattice (SLS), the structure has been grown under various conditions and modes and characterized by the high-resolution x-ray diffraction (XRD) analysis. In this study, the strain modulation is induced by changing parameters and modes, such as the growth temperature, the ratio of V/III beam-equivalent-pressure (BEP), and the growth interruption (GI), and the strain variation is analyzed by measuring the angle separation of 0th-order satellite peak in XRD patterns. The XRD results reveal that the growth temperature and the V/III(Sb/Ga) ratio are major parameters to change the crystallineity and the strain modulation in SLS structures, respectively. We have observed that the SLS samples with compressive strain prepared in this study are show a transition to tensile strain with decreasing V/III(Sb/Ga) ratio, and the GI process is a sensitive factor giving rise to strain modulation. These results obtained in this study suggest that optimized growth temperature and V/III(Sb/Ga) ratio are $350^{\circ}C$ and 20, respectively, and the appropriate GI time is approximately 3 seconds just before InAs growth that the crystallineity is maximized and the strain relaxation is minimized.

Interaction Between Groundwater and Stream Water Induced by the Artificial Weir on the Streambed (하상 인공구조물에 의해 유도되는 지하수-하천수 시스템의 상호작용)

  • Oh, Jun-Ho;Kim, Tae-Hee;Sung, Hyun-Cheong;Kim, Yong-Je;Song, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.9-19
    • /
    • 2007
  • This study investigated the interaction between groundwater and stream water systems, which is caused by the artificial weir on streambed, enforcing external stresses on the groundwater system. The study area is in Nami Natural Recreation Woods located in Chungcheongnam-do Geumsan-gun Nami-myeon Geoncheon-ri. In this study both of hydrophysical methods (hydraulic head) and hyrdochemical investigations (pH, EC, major ion analysis) were applied. In order to identify the relationship between each of study results, cross-correlation analysis is performed. From results of hydrophysical methods, water level fluctuation at BH-14, installed by the weir, shows the double-recession pattern much more frequently and much higher amplitudes than the fluctuation at each of other monitoring wells. Using the results by hydrochemical investigations, hydrochemical properties at BH-14 is similar to the hydrochemical characteristics in stream water. To analyze the interrelationships between the results from each of applied methods, cross-correlation analysis was applied. Results from the correlation analyses, water levels at BH-14 and stream weir showed the highest cross-correlation in hydrophysical aspects. On the other hand, the correlation between stream weir and bridge was the highest in hydrochemical aspects. The difference between the results from each of methods is due that the hydrophysical response at BH-14, such as water level, is induced by the pressure propagation-not with mass transfer, but the hydrochemical interaction, caused by mass transport, takes much more times. In conclusion impermeable artificial weir on streambed changes the interfacial condition between the stream and surrounding aquifers. The induced water flux into the groundwater system during flood period make water level at BH-14 increase instantly and groundwater quality higly similar to the quality of stream water. Referred similarities in both of water level and water quality at BH-14 become much higher when water level at weir grow higher.

Effects of implant thread profile on insertion stress generation in cortical bone studied by dynamic finite element simulation (유한요소 모사해석을 통한 임플란트 나사산 형상이 치밀골의 식립응력에 미치는 영향 분석)

  • Yu, Won-Jae;Ha, Seok-Joon;Cho, Jin-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.279-286
    • /
    • 2014
  • Purpose: The aim of this study was to investigate the effect of implant thread profile on the marginal bone stresses which develop during implant insertion. Materials and methods: Four experimental implants were created by placing four different thread systems on the body ($4.1mm{\times}10mm$) of the ITI standard implant. The thread types studied in this study included the buttress, v-shape, reverse buttress, and square shape threads. In order to examine the insertion stress generation, 3D dynamic finite element analysis was performed which simulated the insertion process of implants into a 1.2 mm thick cortical bone plate (containing 3.5 mm pilot hole) using a PC-based DEFORM 3D (ver 6.1, SFTC, Columbus, OH, USA) program. Results: Insertion stresses higher than human cortical bone developed around the implants. The level of insertion stresses was much different depending on the thread. Stress level was lowest near the v-shape thread, and highest near the square shaped thread. Difference in the interfacial bone stress level was more noticeable near the valley than the tip of the threads. Conclusion: Among the four threads, the v-shape thread was turned out to minimize the insertion stress level and thereby create better conditions for implant osseointegration.

An Analysis on the Over-Potentially Deposited Hydrogen at the Polycrystalline $Ir/H_2SO_4$ Aqueous Electrolyte Interface Using the Phase-Shift Method (위상이동 방법에 의한 다결정 $Ir/H_2SO_4$ 수성 전해질 계면에서 과전위 수소흡착에 관한 해석)

  • Chun Jagn Ho;Mun Kyeong Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The relation between the phase-shift profile fur the intermediate frequencies and the Langmuir adsorption isotherm at the poly-Ir/0.1 M $H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The simplified interfacial equivalent circuit consists of the serial connection of the electrolyte resistance $(R_s)$, the faradaic resistance $(R_F)$, and the equivalent circuit element $(C_P)$ of the adsorption pseudoca-pacitance $(C_\phi)$. The comparison of the change rates of the $\Delta(-\phi)/{\Delta}E\;and\;\Delta{\theta}/{\Delta}E$ are represented. The delayed phase shift $(\phi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\phi=tan^{-1}[1/2{\pi}f(R_s+R_F)C_P]$. The phase-shift profile $(-\phi\;vs.\;E)$ for the intermediate frequency (ca. 1 Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm $(\theta\;vs.\;E)$. The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-Ir/0.1 M $H_2SO_4$ electrolyte interface are $2.0\times10^{-4}$ and 21.1kJ/mol, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).

Cure and Mechanical Behaviors of Cycloaliphatic/DGEBA Epoxy Blend System using Electron-Beam Technique (전자선 조사에 의한 고리지방족/DGEBA 에폭시 블렌드 시스템의 경화 및 기계적 특성)

  • 이재락;허건영;박수진
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • 4-Vinyl-1-cyclohexene diepoxide (VCE)/diglycidyl ether of bisphenol-A (DGEBA) epoxy blends with benzylquinoxalinium hexafluoroanti-monate were cured using an electron-beam technique. The effect of DGEBA content to VCE on cure behavior, thermal stabilities, and mechanical properties was investigated. The composition of VCE/DGEBA blend system vaned within 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%. The cure behavior and thermal stability of the cured specimens was monited by near-infrared spectroscopy and thermogravimetric analysis, respectively. Also, the critical stress intensity factor ($_{4}$) test of the cured specimens was performed to study the mechanical interfacial properties. As a result, the decreases of short side-chain structure and chain scission were observed in NIR measurements as the DGEBA content increases, resulting in varying the hydroxyl and carbonyl groups. And, the initial decomposition temperature (IDT), temperature of maximum weight loss (T$\_$max/), and decomposition activation energy (E$\_$d/) as thermal stability factors were increased with increasing the DGEBA content. These results could be explained by mean of decreasing viscosity, stable aromatic ring structure, and grafted interpenetrating polymer network with increasing of DGEBA content. Also, the maximum $_{4}$ value showed at mixing ratio of 40:60 wt% in this blend system. in this blend system.

Accelerated Degradation Test and Failure Analysis of Rapid Curing Epoxy Resin for Restoration of Cultural Heritage (문화재 복원용 속(速)경화형 Epoxy계 수지의 가속열화시험 및 고장분석 연구)

  • Nam, Byeong Jik;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.467-483
    • /
    • 2017
  • In this study, the degradation properties by temperature stress of $Araldite^{(R)}$ rapid-curing epoxy resin used for inorganic cultural heritages, was identified. The tensile and tensile shear strength of durability decreased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$. In terms of stability of external stress and temperature, the slow-curing epoxy was superior to the rapid-curing epoxy, and cultural heritage conservation plans should therefore consider the strength and stress properties of restoration materials. Color differences increased for 12,624 hours at temperatures of $40{\sim}60^{\circ}C$, and glossiness decreased. Both color and gloss stability were weak, which necessitates the improvement of optical properties. Thermal properties (weight loss, decomposition temperature, and glass transition temperature) of adhesives are linked to mechanical properties. Interfacial properties of the adherend and water vapor transmission rates of adhesives are linked to performance variation. For porous media (ceramics, brick, and stone), isothermal and isohumid environments are important. For outdoor artifacts on display in museums, changes in physical properties by exposure to varying environmental conditions need to be minimized. These results can be used as baseline data in the study of the degradation velocity and lifetime prediction of rapid-curing epoxy resin for the restoration of cultural heritages.

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay (층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동)

  • Mensah, Bismark;Kim, Sungjin;Lee, Dae Hak;Kim, Han Gil;Oh, Jong Gab;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

Electronic and Structural Properties of Interfaces in Fe∖MgO∖Cu-Phthalocyanine Hybrid Structures (Fe∖MgO∖Cu-Phthalocyanine 복합구조 계면구조와 그 전자기적 특성)

  • Bae, Yu Jeong;Lee, Nyun Jong;Kim, Tae Hee;Pratt, Andrew
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.6
    • /
    • pp.184-187
    • /
    • 2013
  • The influence of insertion of an ultra-thin Cu-Phthalocyanine (CuPc) between MgO barrier and ferromagnetic layer in magnetic tunnel juctions (MTJs) was investigated. In order to understand the relation between the electronic and structural properties of Fe${\backslash}$MgO${\backslash}$CuPc, the surface (or interface) analysis was carried out systematically by using spin polarized metastable He de-excited spectroscopy for the CuPc films grown on the Si(001)${\backslash}$5 nm MgO(001)${\backslash}$7 nm Fe(001)${\backslash}$1.6 nm MgO(001) multilayer structure as the thickness of CuPc increases from 0 to 5 nm. In particular, for the 1.6 nm CuPc surface, a rather strong spin asymmetry between up- and down-spin band appears while it becomes weaker or disappears for the CuPc films thinner or thicker than ~1.6 nm. Our results emphasize the importance of the interfacial electronic properties of organic layers in the spin transport of the hybrid MTJs.

Correlation between Interfacial Reaction and Brittle Fracture Found in Electroless Ni(P) Metallization (계면 화학반응과 무전해 니켈 금속층에서 나타나는 취성파괴와의 연관성에 관한 연구)

  • Sohn Yoon-Chul;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.41-46
    • /
    • 2005
  • A systematic investigation of shear testing was conducted to find a relationship between Ni-Sn intermetallic spatting and the brittle fracture observed in electroless Ni(P)/solder interconnection. Brittle fracture was found in the solder joints made of Sn-3.5Ag, while only ductile fracture was observed in a Cu-containing solder (Sn-3.0Ag-0.5Cu). For Sn-3.0Ag-0.5Cu joints, $(Ni,Cu)_3Sn_4$ and/or $(Cu,Ni)_6Sn_5$ compound were formed at the interface without spatting from the Ni(P) film. For Sn-3.5Ag, $Ni_3Sn_4$ compound was formed and brittle fracture occurred in solder pads where $Ni_3Sn_4$ had spalled. From the analysis of fractured surfaces, it was found that the brittle fracture occurs through the $Ni_3SnP$ layer formed between $Ni_3Sn_4$ intermetallic layer and the Ni(P) film. Since the $Ni_3SnP$ layer is getting thicker during/ after $Ni_3Sn_4$ spatting, suppression of $Ni_3Sn_4$ spatting is crucial to ensure the reliability of Ni(P)/solder system.

  • PDF