• Title/Summary/Keyword: interfacial adhesion energy

Search Result 113, Processing Time 0.019 seconds

An Experimental Study on the Property of the Concrete with Glass Hollow Micro Sphere (유리질중공미소구체를 사용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Sang-Heon;Kim, Se-Hwan;Park, Young-Shin;Jeon, Hyun-Gyu;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.160-166
    • /
    • 2014
  • In this research, as a measure of reducing energy lost through external wall, we used Glass Hollow Micro Sphere (HMS) to improve insulation performance to structural concrete. The following is a result of experimenting concrete using HMS. As usage of HMS, decrease in slump arose and it is judged as a need of using superplasticizer. Replacement ratio increasing more and more, amount of air showed tendency to decrease and compressive strength decreased for interfacial adhesion had not been formed. as replacement ratio and unit volume decreased. It appears that thermal conductivity decreased about 30.0~46.5 percent as compared with normal weight concrete.

Morphology and Properties of PP/PU Blends Prepared by Compositional Quenching (Compositional Quenching으로 제조한 PP/PU 블렌드의 모폴로지 및 물성)

  • Lim, Gyeong-Taek;Ju, Min-Hyuk;Kim, Do-Heyoung;Song, Ki-Chan;Kim, Su-Kyung
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2001
  • Polypropylene(PP)/polyurethane(PU) blends with reactive compatibilizers were prepared by the compositional quenching process. Maleic anhydride grafted PP(MPP) and hydroxyethyl maleimide grafted PP(HPP) were introduced as reactive compatibilizers. The formation of HPP and the reactions of compatibilizers with the PU components were confirmed by FT-IR spectroscopy. The morphology, tensile properties, thermal stability, and surface property were studied. The blends prepared by the compositional quenching showed better dispersed domain morphology than the melt blends. The PU domain size became more uniform and reduced in size with increasing the amount of compatibilizers. The blends with HPP showed sightly smaller domain sire than the blends with MPP. The blends with compatibilizers all showed improved tensile properties, surface property. and thermal stability due to the interfacial adhesion effect. The blends with MPP showed higher surface energy than the blends with HPP, but the latter showed better thermal stability compared to the former.

  • PDF

Preparation and characterization of high density polyethylene/silane treated pulverized-phenol resin composites (고밀도 폴리에틸렌과 실란 처리된 분쇄페놀수지 복합재의 제조 및 특성)

  • Park, Jun-Seo;Han, Chang-Gue;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.27-33
    • /
    • 2016
  • Phenolic resin has excellent heat resistance and good mechanical properties as a thermosetting resin. However, its thermosetting characteristics cause it to produce a non-recyclable waste in the form of sprue and runner which is discarded and represents up to 15~20% of the overall products. Forty thousand tons of phenolic resin sprue and runner are disposed of (annually). The (annual) cost of such domestic waste disposal is calculated to be 20 billion won. In this study, discarded phenol resin scraps were pulverized and treated by silanes to improve their interfacial adhesion with HDPE. The sizes of the pulverized pulverulent bodies and fine particles were (100um~1000um) and (1~100um), respectively. The pulverized phenol resin was treated with 3-(methacryloyloxy) propyltrimethoxysilane and vinyltrimethoxy silane and the changes in its characteristics were evaluated. The thermal properties were evaluated by DSC and HDT. The mechanical properties were assessed by a notched Izod impact strength tester. When the silane treated phenol resin was added, the heat distortion temperature of HDPE increased from $77^{\circ}C$ to $96^{\circ}C$ and its crystallinity and crystallization temperature also increased. Finally, its impact strength and tensile strength increased by 20% and 50%, respectively, in comparison with the non-treated phenol resin.