• 제목/요약/키워드: interface shear stress

검색결과 294건 처리시간 0.024초

Capillary 특성을 활용한 섬유 조건에 따른 유리섬유강화 복합재료의 함침성 및 계면강도 평가 (Evaluation of Wettability and Interfacial Property of Glass Fiber Reinforced Composite with Different Glass Fiber Conditions via Capillary Effect)

  • 김종현;권동준;박종만
    • Composites Research
    • /
    • 제34권5호
    • /
    • pp.305-310
    • /
    • 2021
  • 섬유강화복합재료의 기계적물성은 섬유의 체적분율 및 사이징제 조건에 의한 계면강도에 영향을 받는다. 최적의 계면은 기지층에서 강화재로의 기계적 응력을 효과적으로 전달하여 응력 집중을 완화하고 결과적으로 복합재료의 성능을 향상시킬 수 있다. 본 논문에서는 사이징제 조건 및 섬유체적분율에 따른 에폭시 수지와 유리섬유 간의 젖음성 및 계면강도를 평가하였다. 정적 및 동적접촉각을 이용하여 사이징제가 다른 유리섬유와 에폭시 수지의 표면에너지를 계산하였고, 이를 활용하여 접착일을 계산하였다. 유리섬유 토우 캐필러리 시험법을 이용하여 젖음성을 평가하였고, 마이크로드롭렛 인발시험을 통해 계산된 계면전단강도를 이용하여 계면강도를 평가하였다. 최종적으로 젖음성과 계면강도를 활용하여 최적의 유리섬유강화 복합재료 제작 조건을 확인하였다.

열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론 (Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load)

  • 오진호;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Elliptic Blending Model의 평가 (EVALUATION OF ELLIPTIC BLENDING MODEL)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.105-110
    • /
    • 2005
  • Evaluation of elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The algebraic flux model is used for treating the turbulent heat flux. There exist much differences between turbulence models in predicting the temporal variation of temperature. The V2-F model and the EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

수치 모델을 사용한 콘크리트-FRP 부착면의 거동 특성 (Charateristics of Adhesive Joint between Concrete and FRP Using Numerical Method)

  • 조정래;조근희;박영환;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.219-222
    • /
    • 2003
  • Substantial experimental and theoretical work exists on the bond characteristics of FRP-concrete adhesive joints. Experimental studies show that the bond strength cannot always increase with an increase in the bond length, and that the ultimate strength is strongly influenced by the concrete strength. To solve this feature, analytic solutions based on fracture mechanics are widely used, and the local shear stress-slip curve with a softening branch is known as more rational model. The analytic solution, however, cannot describe various shapes of model curve. In this study, numerical method using interface element is introduced to express various shapes of model curve. Characteristics of adhesive joint is investigated for the shapes of the model curve and their parameters. And the numerical solutions are compared with the test results of CFRP sheet adhesive joints.

  • PDF

기계적 프레스 접합의 최적접합조건에 관한 연구 (A Study on the Optimum Joining Condition in a Mechanical Press Joint)

  • 이용복;김태윤;정진성;최지훈
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.752-760
    • /
    • 2000
  • Mechanical press joining has been used in sheet metal joining processes because of its simple process and possibility of joining dissimilar metals, such as steel and aluminum. The strength of mechanical press joining varies with joining conditions. The optimum joining conditions considering tensile-shear and peel-tension strength have to be established to assure the reliability in the joining strength. Therefore, optimization of joining conditions has been investigated for improving joining strength of sheet metal. It is possible to obtain optimum strength from improvement on the joining strength of peel-tension mechanical press joint under multiaxial stress states.

등방성 샌드위치 빔의 평면 변형을 위한 통합 이론 (Universal Theory for Planar Deformations of an Isotropic Sandwich Beam)

  • 이창용
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.35-40
    • /
    • 2020
  • This work is concerned with various planar deformations of an isotropic sandwich beam, which generally consists of three layers: two stiff skin layers and one soft core layer. When one layer of the sandwich beam is modeled as a beam, the variational-asymptotic method is rigorously used to construct a zeroth-order beam model, which is similar to a generalized Timoshenko beam model capable of capturing the transverse shear deformations but still carries out the zeroth-order approximation. To analyze the planar sandwich beam, the sum of the energies of the two skin layers and one core layer is then formulated with different material and geometric properties and represented by a universal beam model in terms of the core-layer kinematics through interface displacement and stress continuity conditions. As a preliminary validation, two extreme examples are presented to demonstrate the capability and accuracy of this present approach.

사다리꼴 그루브를 갖는 미소 채널 내의 유동에서 기-액의 상호마찰의 영향 (The Influence of Liquid-Vapor Interactions on Friction in Micro-Channel Flow with Trapezoidal Grooves)

  • 서정세
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.12-17
    • /
    • 2002
  • Abstract The flow of liquid and vapor is investigated in trapezoidal grooves. The effect of variable shear stress along the interface of the liquid and vapor is studied for both co-current and counter-current flows. Velocity contours and results for the friction are obtained for both trapezoidal grooves. An approximate relation that was previously utilized for the friction for the liquid was modified to obtain accurate agreement with the results for trapezoidal grooves.

Crack-bridging force transfer of composite strengthening: a dynamic point of view

  • Ovigne, P.A.;Massenzio, M.;Jacquelin, E.;Hamelin, P.
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.33-46
    • /
    • 2003
  • This study focuses on the influence of a composite external strengthening on the natural frequencies of a steel beam with open cracks. In a first step, the leading parameters associated with the effect of the composite strengthening are experimentally identified. An analytical model is developed in order to quantify the importance of the force transfer within the resin interface. In a second step, the analytical model of a cracked beam with composite external strengthening is compared to experiments.

Prediction of vibration response of functionally graded sandwich plates by zig-zag theory

  • Simmi, Gupta;H.D., Chalak
    • Advances in aircraft and spacecraft science
    • /
    • 제9권6호
    • /
    • pp.507-523
    • /
    • 2022
  • This study is aimed to accurately predict the vibration response of two types of functionally graded sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or post-processing technique and hence is computationally efficient. Numerical results have been presented on the free vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The applicability of present model is confirmed by comparing with published results. Several new results are also specified, which will serve as the benchmark for future studies.

Ellipting Blending Model에 의한 자연대류 및 열성층 해석 (COMPUTATION OF NATURAL CONVECTION AND THERMAL STRATIFICATION USING THE ELLIPTIC BLENDING MODEL)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.77-82
    • /
    • 2006
  • Evaluation of the elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of natural convection and thermal stratification. For a natural convection problem the models are applied to the prediction of a natural convection in a rectangular cavity and the computed results are compared with the experimental data. It is shown that the elliptic blending model predicts as good as or better than the existing second moment differential stress and flux model for the mean velocity and turbulent quantities. For thermal stratification problem the models are applied to the thermal stratification in the upper plenum of liquid metal reactor. In this analysis there exist much differences between the turbulence models in predicting the temporal variation of temperature. The V2-F model and EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF