• 제목/요약/키워드: interface parameters

검색결과 974건 처리시간 0.028초

A Review on Nanocomposite Based Electrical Insulations

  • Paramane, Ashish S.;Kumar, K. Sathish
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권5호
    • /
    • pp.239-251
    • /
    • 2016
  • The potential of nanocomposites have been drawing the intention of the researchers from energy storage to electrical insulation applications. Nanocomposites are known to improve dielectric properties, such as the increase in dielectric breakdown strength, suppressing the partial discharge (PD) as well as space charge, and prolonging the treeing, etc. In this review, different theories have been established to explain the reactions at the interaction zone of polymer matrix and nanofiller; the characterization methods of nanocomposites are also presented. Furthermore, the remarkable findings in the fields of epoxy, cross-linked polyethylene (XLPE), polypropylene and polyvinyl chloride (PVC) nanocomposites are reviewed. In this study, it was observed that there is lack of comparison between results of lab scale specimens and actual field aged cables. Also, non-standardization of the preparation methods and processing parameters lead to changes in the polymer structure and its surface degradation. However, on the positive side, recent attempt of 250 kV XLPE nanocomposite HVDC cables in service may deliver a promising performance in the coming years. Moreover, materials such as self-healing polymer nanocomposites may emerge as substitutes to traditional insulations.

Complex ESP Systems Proposal based on Pump Syringe and Electronically injector Modules for Medical Application

  • HAMROUNI, Chafaa
    • Journal of Multimedia Information System
    • /
    • 제7권2호
    • /
    • pp.175-188
    • /
    • 2020
  • The paper focuses on conception and development of complex systems composed mainly by a pump syringe subsystem and an electronically injector that facilitates patients saving data operation for medical staff use. We successfully developed conventional approaches for medical system staff requirements, such as system boundary conditions. Decisions at a given level are studied. We propose a complex system architecture, based mainly on patients collected data and ordered stepper injection parameters. System is successfully simulated and prototyped. Design and implement tests are accomplished, the proposed system ensures both the electric syringe pump and the electric injector operation. In addition, this new system introduces several additional options as patient database development and automation injection operation. Development and software operating tests to create a visualization control interface are validated. The solution performs syringe function and electronic injector. User can manage a syringe in two C modes of technology. We propose a program composed of two linked parts. If an error such radiologist bad target selection is made, an image with lower intrinsic quality emerges. Developed Shoot syringe different electronic cards are simulated and prototyped, in addition, maps are driven, prototype. All tests results are accomplished.

셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가 (Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints)

  • 강세형;황재현;김호경
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

TSV 기반 3차원 반도체 패키지 ISB 본딩기술 (ISB Bonding Technology for TSV (Through-Silicon Via) 3D Package)

  • 이재학;송준엽;이영강;하태호;이창우;김승만
    • 한국정밀공학회지
    • /
    • 제31권10호
    • /
    • pp.857-863
    • /
    • 2014
  • In this work, we introduce various bonding technologies for 3D package and suggest Insert-Bump bonding (ISB) process newly to stack multi-layer chips successively. Microstructure of Insert-Bump bonding (ISB) specimens is investigated with respect to bonding parameters. Through experiments, we study on find optimal bonding conditions such as bonding temperature and bonding pressure and also evaluate in the case of fluxing and no-fluxing condition. Although no-fluxing bonding process is applied to ISB bonding process, good bonding interface at $270^{\circ}C$ is formed due to the effect of oxide layer breakage.

공작기계 절삭유 냉각용 오일쿨러 설계 자동화 (Oil Cooler Design Automation on the Cooling of Machine Tool Cutting Oil)

  • 권혁홍
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.89-99
    • /
    • 1999
  • The automatic design of shell & tube type oil cooler can be used in real industrial environments. Since the automatic design system is intended to be used in small companies, it is designed to be operated well under environments of CAD package in the personal computer. It has adopted GUI in design system, and has employed DCl language. Design parameters to be considered in the design stage of shell and tube type oil cooler are type of oil cooler, outer diameter, thickness, length of tube, tube arrangement, tube pitch, flow rate, inlet and outlet temperature, physical properties, premissive pressure loss on both sides, type of baffle plate, baffle plate cutting ratio, clearance between baffle plate outer diameter and shell inner diameter and clearance between baffle plate holes. As a result, the automatic design system of shell & tube type oil cooler is constructed by the environment of CAD software using LISP. We have built database of design data for various kinds of shell & tube type oil coolers. The automatic design system have been assessed and compared with existing specification of design. Good agreement with Handbook of heat exchanger and design dta of real industrial environments has been found.

  • PDF

V-밴드 밀리미터파 대역의 실내 통신환경 분석을 위한 경로손실 예측 소프트웨어 개발 (Development of Propagation Loss Prediction Software for the Indoor V-Band Millimeterwave Communication Environments)

  • 전중창
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권1호
    • /
    • pp.35-39
    • /
    • 2008
  • 본 논문에서는, 기하광학 기법을 적용하여 60GHz 대역의 밀리미터파 실내통신환경에서 전파손실 파라미터를 예측할 수 있는 GUI 기반의 프로그램을 개발하였다. 프로그램은 전기영상법과 광선 추적기법의 두 가지 모듈로 구성되어 있으며, 각각 UTD 이론이 적용되었다. 전기영상법을 사용한 일(一)자형 복도 구조와 광선 추적기법을 적용한 T자형 복도 구조에 대한 결과를 제시하였다. 시물레이션 결과 데이터는 기존 논문에서 발표된 측정 데이터와 비교 검증하였으며, 전파손실에 대한 비교결과가 매우 잘 일치 하였다.

  • PDF

Towards a model of dry shear keyed joints: modelling of panel tests

  • Turmo, J.;Ramos, G.;Aparicio, A.C.
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.469-487
    • /
    • 2012
  • This paper presents a study on the behaviour of the joints of segmental concrete bridges with external prestressing, focusing on the structural response of dry non-epoxied joints with shear keys. A Finite Element joint model to study such structures is validated modelling eight concrete panel tests. The most important feature of this model is that it has been validated with experimental tests on concrete panels which were specifically designed to fail in shear. Interface elements are used to reproduce the non linear behaviour of the joint and parameters deduced from the tests are used to define the constitutive law of these elements. This joint model is of great importance because it will permit the development of a structural model that faithfully reproduces the behaviour of these structures under combined flexure and shear and the study of its global behaviour after the opening of the joints. Interesting conclusions about the behaviour of the dry joints, about the contribution of the different mechanisms transferring shear (friction and cohesion) and about the shear stress distribution in the joint have been reached.

Partitioned analysis of nonlinear soil-structure interaction using iterative coupling

  • Jahromi, H. Zolghadr;Izzuddin, B.A.;Zdravkovic, L.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.33-51
    • /
    • 2008
  • This paper investigates the modelling of coupled soil-structure interaction problems by domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into soil and structure subdomains, which are independently modelled. Coupling of the separately modelled partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms, including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence of the iterative method, are discussed. Based on the presented coupling algorithms a simulation environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is developed which is used here to demonstrate the performance characteristics and benefits of various algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative performance of the various considered coupling algorithms in modelling real soil-structure interaction problems, in which nonlinearity arises in both the structure and the soil, and leads to important conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Substructure based structural damage detection with limited input and output measurements

  • Lei, Y.;Liu, C.;Jiang, Y.Q.;Mao, Y.K.
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.619-640
    • /
    • 2013
  • It is highly desirable to explore efficient algorithms for detecting structural damage of large size structural systems with limited input and output measurements. In this paper, a new structural damage detection algorithm based on substructure approach is proposed for large size structural systems with limited input and output measurements. Inter-connection effect between adjacent substructures is treated as 'additional unknown inputs' to substructures. Extended state vector of each substructure and its unknown excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. It is shown that the 'additional unknown inputs' can be estimated by the algorithm without the measurements on the substructure interface DOFs, which is superior to previous substructural identification approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which simplifies the identification problem compared with other existing work. Structural damage can be detected from the degradation of the identified substructural element stiffness values. The performances of the proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement noise effect is considered. Both the simulation results and experimental data validate that the proposed algorithm is viable for structural damage detection of large size structural systems with limited input and output measurements.