• Title/Summary/Keyword: interface parameters

Search Result 974, Processing Time 0.023 seconds

The SSN and Crosstalk Noise Reduction I/O Interface Scheme Using the P/N-CTR Code (P/N-CTR 코드를 사용한 SSN과 누화 잡음 감소 I/O 인터페이스 방식)

  • Kim, Jun-Bae;Gwon, O-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.4
    • /
    • pp.302-312
    • /
    • 2001
  • As the data transfer rate between chips gets higher, both crosstalk and SSN (Simultaneous Switching Noise) deteriorate seriously the performance of a system. The proposed interface scheme uses P-CTR and N-CTR(Positive/Negative Constant Transition Rate) which encodes data at both falling and rising edges, where the transition directions of N-CTR and P-CTR are opposite. And the proposed bus system places two P-CTR drivers and two N-CTR drivers alternatively. In the proposed P/N-CTR interface scheme, the signals of neighboring interconnection lines at both sides of a bus will not switch simultaneously in the same direction, which leads to reduction in the maximum crosstalk and SSN compared to conventional interfaces. For verification of noise reduction of the proposed interface scheme, the scheme is applied to several kinds of bit-wide buses with various interconnection structures, and HSPICE simulation was performed with 0.35 ${\mu}{\textrm}{m}$ SPICE parameters. The simulation results show that in the 32-bit or less wide bus, the maximum SSN and crosstalk are reduced to at least 26.78% and 50%, respectively in comparison with the conventional interface scheme.

  • PDF

Synthesis of Resol Type Phenol Resins and Their Reaction Properties (Resol형 페놀수지의 합성과 반응특성)

  • Kim, Dong-Kwon;Joe, Ji-Eun;Kim, Jung-Hun;Park, In Jun;Lee, Soo-Bok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.288-291
    • /
    • 2005
  • Resol type phenol-formaldehyde (PF) resin was synthesized by addition reaction of formaldehyde (F) and phenol (P). And the PF resin was synthesized by condensation reaction in which water was removed. In this work, we studied the influence of experimental parameters in the addition reaction, such as F/P mole ratio, amount of catalyst, reaction temperature, reaction time, and so on. Also, we studied the influence of molecular weight and viscosity of PE resin as a function of condensation time. As a result, in addition reaction, the reaction time decreased remarkably as the catalyst concentration increased, and the time decreased with increasing reaction temperature at a constant catalyst concentration. Also, in condensation reaction, the viscosity of resol type PF resin increased from 1500 to 9000 cps as a function of condensation time; molecular weight showed from 500 to 1100 g/mol.

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Analysis of Solidification Process Around a Vertical Tube Considering Density Change and Natural Convection (수직원관 주위에서 밀도차와 자연대류를 고려한 응고과정 해석)

  • 김무근;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.142-155
    • /
    • 1992
  • Numerical analysis is performed for the unsteady axisymmetric two dimensional phase change problem of freezing of water around a vertical tube. Heat conduction in the tube wall and solid phase, natural convection in liquid phase and volume expansion caused by density difference between solid and liquid phases are included in the numerical analysis. Existing correlation is used for estimating density-temperature relation of water, and the effect of volume expansion is reflected as fluid velocity at the interface and the free surface. As pure water has maximum density at 4.deg. C, it is found that there exists an initial temperature at which the flow direction reverses near the interface and by this effect the slope of interface becomes reversed depending on the initial temperature of water. By considering natural convection and solid-liquid density difference in the calculation, their effects on phase change process are studied and the effects of various parameters are also studied quantitatively.

Interactive Hair Styling Interface (인터랙티브 헤어 스타일링 인터페이스)

  • Cho, Jung-Hyun;Ko, Hyeong-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.455-458
    • /
    • 2009
  • The statistical wisp model for hairstyle generation was introduced in [1]. It provided a program to load human models, set parameters, generate wisps and strands, and make constraints. However, the program used hard-coded human models and prescribed constraints so that it was hard to change different models and manipulate constraints. Hence we provide a simple interface by drawing maps and constraints. Also, we can increase the speed of computation by using GPU acceleration.

  • PDF

Influence of imperfectly bonded piezoelectric layer with irregularity on propagation of Love-type wave in a reinforced composite structure

  • Singh, Abhishek Kumar;Chaki, Mriganka Shekhar;Hazra, Bristi;Mahto, Shruti
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.325-344
    • /
    • 2017
  • The present paper investigates the propagation of Love-type wave in a composite structure comprised of imperfectly bonded piezoelectric layer with lower fiber-reinforced half-space with rectangular shaped irregularity at the common interface. Closed-form expression of phase velocity of Love-type wave propagating in the composite structure has been deduced analytically for electrically open and short conditions. Some special cases of the problem have also been studied. It has been found that the obtained results are in well-agreement to the Classical Love wave equation. Significant effects of various parameters viz. irregularity parameter, flexibility imperfectness parameter and viscoelastic imperfectness parameter associated with complex common interface, dielectric constant and piezoelectric coefficient on phase velocity of Love-type wave has been reported. Numerical computations and graphical illustrations have been carried out to demonstrate the deduced results for various cases. Moreover, comparative study has been performed to unravel the effects of the presence of reinforcement and piezoelectricity in the composite structure and also to analyze the existence of irregularity and imperfectness at the common interface of composite structure in context of the present problem which serves as a salient feature of the present study.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Fabrication of the interface-treated ramp-edge Josephson junctions using Sr$_2AlTaO_6$ insulating layers (Sr$_2AlTaO_6$ 절연막을 이용한 계면처리된 경사형 모서리 조셉슨 접합의 제작)

  • Choi, Chi-Hong;Sung, Gun-Yong;Han, Seok-Kil;Suh, Jeong-Dae;Kang, Kwang-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.63-66
    • /
    • 1999
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. Low-dielectric Sr$_2AITaO_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2Cu_3O_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the bottom YBCO edge using plasma treatment prior to deposition of the top YBCO electrode. We investigated the effects of pre-annealing and post-annealing on the characteristics of the interface-treated Josephson junctions. The junction parameters were improved by using in-situ RF plasma cleaning treatment.

  • PDF

A model to analyze a buried structure response to surface dynamic loading

  • Dancygier, A.N.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 2000
  • A relatively simple model of a buried structure response to a surface loading that can simulate a possible opening and closure of a gap between the soil and the structure is presented. Analysis of the response of small and medium scale buried roof slabs under surface impulsive loading shows that the model's predictions are in fairly good agreement with the experimental results. Application of the model to a study case shows the relative influence of system parameters such as, the depth of burial, the arching coefficient, and the roof thickness, on the interface pressure and on the roof displacement. This model demonstrates the effect of a gap between the structure and the soil. The relative importance of including a gap opening and closure in the analysis is examined by the application of the model to a study case. This study results show that the deeper the depth of burial, the longer the gap duration, and the shorter the duration of the initial interface impact, while the higher the soil's shear resistance, the higher the gap duration, and the shorter the initial interface impact duration.