• 제목/요약/키워드: interface modification

검색결과 289건 처리시간 0.031초

Structural Identification of Modified Amino Acids on the Interface between EPO and Its Receptor from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis

  • Song, Kwang-Eun;Byeon, Jaehee;Moon, Dae-Bong;Kim, Hyong-Ha;Choi, Yoo-Joo;Suh, Jung-Keun
    • Molecules and Cells
    • /
    • 제37권11호
    • /
    • pp.819-826
    • /
    • 2014
  • Protein modifications of recombinant pharmaceuticals have been observed both in vitro and in vivo. These modifications may result in lower efficacy, as well as bioavailability changes and antigenicity among the protein pharmaceuticals. Therefore, the contents of modification should be monitored for the quality and efficacy of protein pharmaceuticals. The interface of EPO and its receptor was visualized, and potential amino acids interacting on the interface were also listed. Two different types of modifications on the interface were identified in the preparation of rHu-EPO BRP. A UPLC/Q-TOF MS method was used to evaluate the modification at those variants. The modification of the oxidized variant was localized on the Met54 and the deamidated variants were localized on the Asn47 and Asn147. The extent of oxidation at Met54 was 3.0% and those of deamidation at Asn47 and Asn147 were 2.9% and 4.8%, respectively.

위상 변경 고유치 재해석 기법을 이용한 최적 구조물 동특성 변경 (Optimal Structural Dynamics Modification Using Eigen Reanalysis Technique of Technique of Topological Modifications)

  • 이준호;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.77-81
    • /
    • 2003
  • SDM (Structural Dynamics Modification) is a tool to improve dynamic characteristics of a structure, more specifically of a base structure, by adding or deleting auxiliary (modifying) structures. In this paper, the goal of the optimal SDM is set to maximize the natural frequency of a base plate structure by attaching serially-connected beam stiffeners. The design variables are chosen as positions of the attaching beam stiffeners, where the number of stiffeners is considered as a design space. The problem of non-matching interface nodes between the base plate and beam stiffeners is solved by using localized Lagrange multipliers, which act to glue the two structures with non-matching interface nodes. As fer the cases of non-matching interface nodes problem, the governing equation of motion of a structure can be considered from the viewpoint of a topological modification, which involves the change of the number of structural members and DOFs. Consequently, the eigenpairs of the beam-stiffened plate structure are obtained by using an eigen reanalysis technique of topological modifications. Evolution Strategies (ES), which is a probabilistic population-based optimization technique that mimics the principles from biological evolution in nature, is utilized as a mean for the optimization.

  • PDF

Mussel-Inspired, Fast Surface Modification of Solid Substrates

  • Hong, Sang-Hyeon;Kang, Sung-Min;Lee, Hae-Shin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.201-201
    • /
    • 2011
  • Recently, mussel-inspired surface modification, called polydopamine coating has been extensively implemented to many areas, due to its material versatility and ease to use. In particular, incubation of substrates in an alkaline dopamine solution resulted in self-polymerization of dopamine and modified variety of material surfaces, including noble metals, metal oxides, ceramics, and synthetic polymers. However, the polydopamine coating has a drawback to practical use; it takes more than 12 hrs to introduce sufficient polydopamine layers to solid substrates. Here, we investigated the rate-enhanced polydopamine coating by varying reaction conditions: pH, concentration, and the addition of the oxidizing agent. As a result, the optimum condition for fast polydopamine coating was found, and solid substrates were efficiently coated with polydopamine layers in just few minutes using the condition. The polydopamine-modified surface was characterized by XPS and contact angle goniometry, and the biocompatibility of the modified surface was also proved by cell attachment test.

  • PDF

Evaluation on the Mechanical Performance of Low-Quality Recycled Aggregate Through Interface Enhancement Between Cement Matrix and Coarse Aggregate by Surface Modification Technology

  • Choi, Heesup;Choi, Hyeonggil;Lim, Myungkwan;Inoue, Masumi;Kitagaki, Ryoma;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.87-97
    • /
    • 2016
  • In this study, a quantitative review was performed on the mechanical performance, permeation resistance of concrete, and durability of surface-modified coarse aggregates (SMCA) produced using low-quality recycled coarse aggregates, the surface of which was modified using a fine inorganic powder. The shear bond strength was first measured experimentally and the interface between the SMCA and the cement matrix was observed with field-emission scanning electron microscopy. The results showed that a reinforcement of the interfacial transition zone (ITZ), a weak part of the concrete, by coating the surface of the original coarse aggregate with surface-modification material, can help suppress the occurrence of microcracks and improve the mechanical performance of the aggregate. Also, the use of low-quality recycled coarse aggregates, the surfaces of which were modified using inorganic materials, resulted in improved strength, permeability, and durability of concrete. These results are thought to be due to the enhanced adhesion between the recycled coarse aggregates and the cement matrix, which resulted from the improved ITZ in the interface between a coarse aggregate and the cement matrix.

Bio-Inspired Surface Modification of 3-Dimensional Polycaprolactone Scaffold for Enhanced Cellular Behaviors

  • 조선애;강성민;박수아;이해신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.202-202
    • /
    • 2011
  • The research of 3-dimensional (3-D) scaffold for tissue engineering has been widely investigated as the importance of the 3-D scaffold increased. 3-D scaffold is needed to support for cells to proliferate and maintain their biological functions. Furthermore, its architecture defines the shape of the new bone and cartilage growth. Polycaprolactone (PCL) has been one of the most promising materials for fabricating 3-D scaffold owing to its excellent mechanical property and biocompatibility. However, there are practical problems for using it, in vitro and in vivo; extracellular matrix components and nutrients cannot penetrate into the inner space of scaffold, due to its hydrophobic property, and thus cell seeding and attachment onto the inner surface remain as a challenge. Thus, the surface modification strategy of 3-D PCL scaffold is prerequisite for successful tissue engineering. Herein, we utilized a mussel-inspired approach for surface modification of 3-D PCL scaffold. Modification of 3-D PCL scaffolds was carried out by simple immersion of scaffolds into the dopamine solution and stimulated body fluid, and as a result, hydroxyapatite-immobilized 3-D PCL scaffolds were obtained. After surface modification, the wettability of 3-D PCL scaffold was considerably changed, and infiltration of the pre-osteoblastic cells into the 3-D scaffold followed by the attachment onto the surface was successfully achieved.

  • PDF

An Interactive Interface for Rapid Motion Modification of an Articulated Object Model with Multiple Joints and Its Application to Kendo Coaching

  • Naoya, Yokoyama;Ishimatzu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.46.2-46
    • /
    • 2001
  • A method of interactive human interface for motion modification of an articulated object model like a human body, a multiple joints robot, etc. has been developed, and implemented to a human body motion model. In the case of computer software models, the initial data setting for overall motion is rather easy. However, modifying or correcting the initially set motion is rather difficult for keeping consistency. In this research, the requirements shown below have mainly been set as the specifications ...

  • PDF

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin;Han, Jun Hyun
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.105-110
    • /
    • 2020
  • Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

Cemented Carbide기판의 레이저 표면 개질이 다이아몬드 박막의 접합력에 미치는 영향 (Effect of Laser Surface Modification of Cemented Carbide Substrates on the Adhesion of Diamond Films)

  • 이동구
    • 열처리공학회지
    • /
    • 제13권3호
    • /
    • pp.170-176
    • /
    • 2000
  • A novel method for improving the adhesion of diamond films on cemented carbide tool inserts has been investigated. This method is based on the formation of a compositionally graded interface by developing a microrough surface structure using a pulsed laser process. Residual stresses of diamond films deposited on laser modified cemented carbides were measured as a function of substrate roughness using micro-Raman spectroscopy. The surface morphology and roughness of diamond films and cemented carbides were also investigated at different laser modification conditions. It was found that the increasing interface roughness reduced the average residual stress of diamond films, resulting in improved adhesion of diamond films on cemented carbides.

  • PDF

탄닌산을 이용한 나노입자 표면 개질 및 분석 (Tannic acid Mediated Surface Modification of Mesoporous Silica Nanoparticles)

  • 이주연;김형준
    • 접착 및 계면
    • /
    • 제23권3호
    • /
    • pp.70-74
    • /
    • 2022
  • 탄닌산은 식물 유래 폴리페놀 중 하나로, 대부분의 생체고분자와 분자간결합을 할 수 있어서 분자적 접착제로서 연구가 되어 왔으며, 표면 개질, 에너지 저장 및 발생 장치, 의료용 제재로서 활용이 되고 있다. 본 연구에서는 약물 전달과 바이오이미징 등 의생명공학 분야에서 다양하게 활용되는 다공성 실리카 나노입자를 합성하고, 탄닌산을 이용하여 다공성 실리카 나노입자의 표면을 개질 한 뒤, 나노입자의 표면을 분석하였다.

비부합 결합을 이용한 구조물 변경법 (Structural dynamics modification using non-matching substructure synthesis.)

  • 정의일;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.666-671
    • /
    • 2002
  • For a large structure, substructure based SDM(structural dynamics modification) method is very effective to raise its dynamic characteristics. Dividing into smaller substructures has a major advantage in the aspect of computation especially for getting sensitivities, which are in the core of SDM process. But quite often, non-matching nodes problem occurs in the process of synthesizing substructures. The reason is that, in general, each substructure is modelled separately, then later combined together to form a entire structure model under interface constraint conditions. Without solving the non-matching nodes problem, the substructure based SDM can not be processed. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalues of whole structure are calculated using determinant search method. The number of degrees of freedom of the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Thus, the eigenvalue sensitivities can be easily calculated, and further SDM can be efficiently performed. Some numerical problems are tested to show the effectiveness of handling non-matching nodes.

  • PDF