• Title/Summary/Keyword: interface debonding

Search Result 140, Processing Time 0.03 seconds

An Analytical Model on the Interface Debonding Failure of RC Beams Strengthened by GFRP (GFRP로 보강된 RC보의 계면박리파괴 해석모델)

  • 김규선;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.69-80
    • /
    • 1999
  • The strengthening of reinforced concrete structures by externally bonded GFRP has become increasingly common in resent years. However the analysis and design method for GFRP plate strengthening of RC beams is not well established yet. The purpose of present paper is, therefore, to define the failure mechanism and failure behavior of strengthened RC beam using GFRP and then to propose a resonable method for the calculation of interface debonding load for those beams. From the experimental results of beams strengthened by GFRP, the influence of length and thickness, width of plate on the interfacial debonding failure behavior of beam is studied and, on the basis of test results, the semi-empirical equation to predict debonding load is developed. The proposed theory based on nonlinear analysis and critical flexural crack width, predicts relatively well the debonding failure load of test beams and may be efficiently used in the analysis and design of strengthened RC beams using GFRP.

Wave propagation simulation and its wavelet package analysis for debonding detection of circular CFST members

  • Xu, Bin;Chen, Hongbing;Xia, Song
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.181-194
    • /
    • 2017
  • In order to investigate the interface debonding defects detection mechanism between steel tube and concrete core of concrete-filled steel tubes (CFSTs), multi-physical fields coupling finite element models constituted of a surface mounted Piezoceramic Lead Zirconate Titanate (PZT) actuator, an embedded PZT sensor and a circular cross section of CFST column are established. The stress wave initiation and propagation induced by the PZT actuator under sinusoidal and sweep frequency excitations are simulated with a two dimensional (2D) plain strain analysis and the difference of stress wave fields close to the interface debonding defect and within the cross section of the CFST members without and with debonding defects are compared in time domain. The linearity and stability of the embedded PZT response under sinusoidal signals with different frequencies and amplitudes are validated. The relationship between the amplitudes of stress wave and the measurement distances in a healthy CFST cross section is also studied. Meanwhile, the responses of PZT sensor under both sinusoidal and sweep frequency excitations are compared and the influence of debonding defect depth and length on the output voltage is also illustrated. The results show the output voltage signal amplitude and head wave arriving time are affected significantly by debonding defects. Moreover, the measurement of PZT sensor is sensitive to the initiation of interface debonding defects. Furthermore, wavelet packet analysis on the voltage signal under sweep frequency excitations is carried out and a normalized wavelet packet energy index (NWPEI) is defined to identify the interfacial debonding. The value of NWPEI attenuates with the increase in the dimension of debonding defects. The results help understand the debonding defects detection mechanism for circular CFST members with PZT technique.

Modeling of Single Fiber Pull-Out Experiment Considering the Effects of Transverse Isotropy (횡방향 등방성을 고려한 단섬유 인장 실험 모델링)

  • Seol, Il-Chan;Lee, Choon-Yeol;Chai, Young-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1384-1392
    • /
    • 2002
  • Single fiber pull-out technique has been commonly used to characterize the mechanical behavior of interface in fiber reinforced composite materials. An improved analysis considering the effects of transversely isotropic properties of fiber and the effects of thermal residual stresses in both radial and axial directions along the fiber/matrix interface is developed for the single fiber pull-out test. Although the stress transfer properties across the interface is not much affected by considering the transversely isotropic properties of fiber, interfacial debonding is notably encouraged by the effect. The interfacial shear stress that plays an important role in interfacial debonding is very much affected by the component of axial thermal residual stress in the bonded region, which can induce a two-way debonding mechanism.

A critical steel yielding length model for predicting intermediate crack-induced debonding in FRP -strengthened RC members

  • Dai, Jian-Guo;Harries, Kent A.;Yokota, Hiroshi
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.457-473
    • /
    • 2008
  • Yielding of the internal steel reinforcement is an important mechanism that influences the Intermediate Crack-induced debonding (IC debonding) behavior in FRP-strengthened RC members since the FRP is required to carry additional forces beyond the condition of steel yielding. However, rational design practice dictates an appropriate limit state is defined when steel yielding is assured prior to FRP debonding. This paper proposes a criterion which correlates the occurrence of IC debonding to the formulation of a critical steel yielding length. Once this length is exceeded the average bond stress in the FRP/concrete interface exceeds its threshold value, which proves to correlate with the average bond resistance in an FRP/concrete joint under simple shear loading. This proposed IC debonding concept is based on traditional sections analysis which is conventionally applied in design practice. Hence complex bond stress-slip analyses are avoided. Furthermore, the proposed model incorporates not only the bond properties of FRP/concrete interface but also the beam geometry, and properties of steel and FRP reinforcement in the analysis of IC debonding strength. Based upon a solid database, the validity of the proposed simple IC debonding criterion is demonstrated.

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

Clad강의 debonding 현상에 대한 연구 2

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.22-27
    • /
    • 1987
  • The debonding of clad steel was often occurred at interface between stainless steel and carbon steel during the fabrication of pressure vessel. In order to clarify the causes of debonding phenomena, the fabrication sequences were fully analyzed. As a result, possible factors were noticed for causing the debonding of clad steel, that is, thermal treatment on weldment and welding. Moreover the existence of hydrogen diffused from surroundings also expedites the debonding of clad steel. In this stud, the effect of welding thermal cycle, hydrogen and mixed condition under thermal treatment on the interfacial strength of clad steel were investigated to understand the debonding mechanism of clad steel. From this study, it has been confirmed that the interfacial strength of clad steel was remarkablely deteriorated due to welding and/or existence of hydrogen under thermal treatment. In the case of welding thermal cycle effect, the higher temperature at interface experienced by welding, the more reduction in interfacial strength of clad steel resulted in. And the existence of diffusible hydrogen also reduced the interfacial strength. It is also found that the interfacial strength of clad steel became much lower value than that of the as-received plate under coexistence of above mentioned factors.

  • PDF

Nonlinear analysis of RC beams strengthened by externally bonded plates

  • Park, Jae-Guen;Lee, Kwang-Myong;Shin, Hyun-Mock;Park, Yoon-Je
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.119-134
    • /
    • 2007
  • External bonding of steel or FRP plates to reinforced concrete (RC) structures has been a popular method for strengthening RC structures; however, unexpected premature failure often occurs due to debonding between the concrete and the epoxy. We proposed a Coulomb criterion with a constant failure surface as the debonding failure criterion for the concrete-epoxy interface. Diagonal shear bonding tests were conducted to determine the debonding properties that were related to the failure criterion, such as the angle of internal friction and the coefficient of cohesion. In addition, an interface element that utilized the Coulomb criterion was implemented in a nonlinear finite element analysis program to simulate debonding failure behavior. Experimental studies and numerical analysies on RC beams strengthened by an externally bonded steel or FRP plate were used to determine the range of the coefficient of cohesion. The results that were presented prove that premature failure loads of strengthened RC beams can be predicted with using the bonding properties and the finite element program with including the proposed Coulomb criterion.

Modified Micro-Mechanical Fiber Bridging Model for Crack Plane of Fiber Rreinforced Cementitious Composite (섬유보강 복합체의 균열면 해석을 위한 수정 미세역학 모델)

  • Shin, Kyung-Joon;Park, Jong-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.365-368
    • /
    • 2006
  • In this paper, the post cracking stress-crack width relationship of the composite is studied from a micromechanics points of view. Cook-Gordon debonding effect is studied by more refined method with considering of chemical friction of fiber interface. As a result, fiber with pre-debonding length retards stress development and shows more wide crack width for the same force level. longer pre-debonding length and lower pre-debonding bond strength results in lower full-debonding force, but same crack width.

  • PDF

Theoretical Analysis of Interface Debonding on the Strengthened RC Bridge Decks (성능향상된 RC 바닥판의 계면파괴 해석)

  • 오홍섭;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.668-676
    • /
    • 2002
  • Especially, when orthotropic material such as uni-dierectionally woven Carbon Fiber Sheet, resisting only the unidirectional tension, is used to strengthening bridge deck, the direction and width of the strengthening material should be considered very carefully. Thus, analysis of the failure characteristics and the premature failure mechanism of the strengthened decks based on the test results are required. In this study, the premature failure due to the interface debonding of strengthening material of the strengthened deck slab are inquired into failure mechanism through both experiments results and analyses with prototype strengthened deck specimens using carbon fiber sheet. From the test results, interface debonding of strengthening material is occured at the crack face

An Analysis of Interface Debonding Failure on Reinforced Concrete Beams Strengthened with Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 계면박리해석)

  • 심종성;배인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.839-844
    • /
    • 1998
  • The purpose of this study is to analyze the interface debonding failure on RC beams strengthened with carbon fiber sheet(CFS). The behavior of damaged RC beams strengthened with CFS is analytically investigated using both linear elastic fracture mechanics (LEFM) approach and the finite element method. This study includes the investigation of the separation mode by interface fracture of the strengthening materials due to the interfacial shear and normal stresses.

  • PDF