• Title/Summary/Keyword: interface crack

Search Result 518, Processing Time 0.024 seconds

INTERACTION BETWEEN THREE MOVING GRIFFITH CRACKS AT THE INTERFACE OF TWO DISSIMILAR ELASTIC MEDIA

  • Das, S.;Patra, B.;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The paper deals with the interaction between three Griffith cracks propagating under antiplane shear stress at the interface of two dissimilar infinite elastic half-spaces. The Fourier transform technique is used to reduce the elastodynamic problem to the solution of a set of integral equations which has been solved by using the finite Hilbert transform technique and Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips are obtained. Numerical values of the interaction efect have been computed for and results show that interaction effects are either shielding or amplification depending on the location of each crack with respect to other and crack tip spacing. AMS Mathematics Subject Classification : 73M25.

Transient Response of a Permeable Crack Normal to a Piezoelectric-elastic Interface: Anti-plane Problem

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1500-1511
    • /
    • 2004
  • In this paper, the anti-plane transient response of a central crack normal to the interface between a piezoelectric ceramics and two same elastic materials is considered. The assumed crack surfaces are permeable. By virtue of integral transform methods, the electro elastic mixed boundary problems are formulated as two set of dual integral equations, which, in turn, are reduced to a Fredholm integral equation of the second kind in the Laplace transform domain. Time domain solutions are obtained by inverting Laplace domain solutions using a numerical scheme. Numerical values on the quasi-static stress intensity factor and the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Analysis of Fracture Mechanics Parameter and Fracture Surface in Bonded Ceramic Joints (세라믹 접합부재에 대한 파괴역학인자 및 파면 해석)

  • 김기성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, attempts have been made to be join ceramics to metals in order to make up for the brittleness of ceramics. The difference in the coefficients of linear expansion of the two materials joined at high temperature will cause residual stress, which has a strong influence on the strength of the bonded joints. In this paper, the residual stress distribution and stress intensity factors of the ceramic/metal bonded joints were analyzed by 2-dimensional elastic boundary element method. Fracture toughness tests of ceramic/metal bonded joints with an interface crack were carried out. So the advanced method of quantitative strength evaluation for ceramic/metal bonded joints is to be suggested. Fracture surface and crack propagation path were observed using scanning electron microscope.

  • PDF

Crack propagation and deviation in bi-materials under thermo-mechanical loading

  • Chama, Mourad;Boutabout, Benali;Lousdad, Abdelkader;Bensmain, Wafa;Bouiadjra, Bel Abbes Bachir
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.441-457
    • /
    • 2014
  • This paper presents a finite element based numerical model to solve two dimensional bi-material problems. A bi-material beam consisting of two phase materials ceramic and metal is modelled by finite element method. The beam is subjected simultaneously to mechanical and thermal loadings. The main objective of this study is the analysis of crack deviation located in the brittle material near the interface. The effect of temperature gradient, the residual stresses and applied loads on crack initiation, propagation and deviation are examined and highlighted.

Boundary Element Analysis of Stress Intensity Factor for Interface Edge Crack in A Unidirectional Composite (단일방향 복합재료의 공유면에 존재하는 모서리 균열의 경계요소해석)

  • 이상순;김정규
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.77-83
    • /
    • 1996
  • The overall stress intensity factor for edge crack located at the interface between fiber and matrix of a unidirectional graphite/epoxy laminate model subjected to a transverse tensile strain have been computed using the boundary element method. Such crack might be generated due to a stress singularity in the vicinity of the free surface. The amplitude of complex stress intensity factor has the constant value at large crack lengths.

  • PDF

Thermal Stress Intensity Factors for Partially Insulated Interface Crack under Uniform Heat Flow (부분 열유동이 있는 접합 경계면균열의 열응력세기계수 결정)

  • 이강용;박상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1705-1712
    • /
    • 1994
  • Hilbert problems are derived to evaluate thermal stress intensity factors for a partially insulated crack subjected to vertically uniform heat flow in infinite bonded dissimilar materials. In case of fully insulated crack surface, the present solutions of thermal stress intensity factors are reduced into the same as the previous results. For the homogeneous material, mode II thermal stress intensity factor only exists. However, in the bonded dissimilar materials, both mode I and II thermal stress intensity factors are obtained. Specially, in this case, mode II thermal stress intensity factor is dominent. Also, thermal stress intensity factors are strongly influenced by the material properties. Thermal stress intensity factors decrease when the degree of insulation decreases.

Contact Damage and Fracture of Poreclain/Glass-Infiltrated Alumina Layer Structure for Dental Application (치아 응용을 위한 /유리침윤 알루미나 이중 층상구조의 접촉손상 및 파괴)

  • 정연길;여정구;최성설
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1257-1265
    • /
    • 1998
  • Hertzian contact tests were used to investigate the evolution of fracturedamage in the coating layer as functions of contact load and coating thickness by studying crack patterns in porcelain on glass-infiltrated alumina bilayer system conceived to simulate the crown structure of a tooth. Cone cracks initiated at the coating top surface without delamination at interface and crack propagation to substrate. Preferentially the cracks made multi-cracks at the coating top surface rather than proceeding to interface. The cracks were highly stabilized with wide ranges between the loads to initiate first cracking and to cause final failure im-plying damage-tolerant capability. Finite element modelling was used to evaluate the stress distribution. Maximum tensile stress were responsible for the cracking at the coating layer and had a profound influence on the crack pattern and fracture damage in the layered structure materials.

  • PDF

Viscoelastic Analysis of Stress Intensity Factor for Interface Edge Crack in a Unidirectional Liminate (단일방향 복합재료의 공유면에 존재하는 계면 모서리균열의 점탄성 해석)

  • 이상순;김범식
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.129-134
    • /
    • 1997
  • Interfacial stress singularity in a unidirectional two-dimensional laminate model consisting of an elastic fiber and a viscoelastic matrix has been investigated using the time-domain boundary element method. First, the interfacial singular stresses between the fiber and the matrix of a unidirectional laminate subjected to a uniform transverse tensile strain have been investigated near the free surface, but without any defect or any edge crack. Such a stress singularity might lead to fiber-matrix debonding or interfacial edge cracks. Then, the overall stress intensity factor for the case of a small interfacial edge crack of length a has been computed.

  • PDF

A Study on the Fracture Behavior of Tooth Interfacial Layer, DEJ (Dental Enamel Junction) (치아 계면 층 DEJ(Dental Enamel Junction)의 파괴 거동에 관한 수치해석적 연구)

  • Mishra, Dhaneshwar;Yoo, Seung-Hyun;Jeong, Ung-Rak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • Numerical experiments on biological interfacial layer, DEJ by finite element software ABAQUS have been conducted to study its fracture behavior including crack bridging / arresting characteristics in the model. Crack growth simulation has been carried out by numerical tool, XFEM, devoted to study cracks and discontinuities. The fracture toughness of DEJ has been estimated before and after crack bridging. The implications of bridging in numerical study of fracture behavior of DEJ-like biological interface have been discussed. It has been observed that the results provided by the numerical studies without proper accommodation of bridging phenomenon can mislead. This study can be helpful for understanding the DEJ-like biological interface in terms of its fracture toughness, an important material characteristics. This property of the material is an important measure that has to be taken care during design and manufacturing processes.

Evaluation Method of Interface Strength in Bonded Dissimilar Materials of AU/Epxy (Al/ Epoxy 이종 접합체에 대한 계면강도의 평가방법)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2277-2286
    • /
    • 2002
  • The application of bonded dissimilar materials to industries as automobiles, aircraft, rolling stocks, electronic devices and engineering structures is increasing gradually because these materials, compared to the homogeneous materials, have many advantages for material properties. In spite of such wide applications of bonded dissimilar materials, the evaluation method of quantitative strength considering the stress singularities for its bonded interface has not been established clearly. In this paper, the stress singularity for Bctors and the stress intensity factors were analyzed by boundary element method(BEM) for the scarf joints of Al/Epoxy with and without a crack, respectively. From static fracture experiments of the bonded scarf joints, a fracture criterion and a evaluation method of interface strength in bonded dissimilar materials were proposed and discussed.