• Title/Summary/Keyword: interface charge

Search Result 472, Processing Time 0.029 seconds

Development of Korean Root Cause Analysis Software for Analyzing Patient Safety Incidents (환자안전사건 분석을 위한 한글 근본원인분석 소프트웨어 개발)

  • Choi, Eun-Young;Lee, Hyeon-Jeong;Ock, Min-Su;Lee, Sang-Il
    • Quality Improvement in Health Care
    • /
    • v.24 no.1
    • /
    • pp.9-22
    • /
    • 2018
  • Purpose: The purpose of this study is to develop the Korean root cause analysis (RCA) software that can be used to systematically investigate underlying causes for preventing or reducing recurrence of patient safety incidents. Methods: We reviewed the existing guidelines and literatures on the RCA in order to figure out the RCA process. Also we examined the existing RCA softwares for investigating patient safety incidents to design the contents and interface of the RCA software. Based on the results of reviewing literatures and softwares, we developed a draft version of the Korean RCA software that can be easily used in Korean hospital settings by RCA teams. Results: The Korean RCA software consisted of several modules, which are modules for identifying patient safety incidents, organizing RCA team, collecting and analysing data, determining contributory factors and root causes, developing the action plans, and guiding evaluation. Conclusion: The Korean RCA software included optimized RCA process and structured logic for cause analysis. Thus even beginners in RCA are expected to easily use this software for investigating patient safety incidents. As software has been developed with the public financial support, it will be distributed free of charge. We hope that it will contribute to facilitating patient safety improvement activities in Korea.

Structural and electrical characterizations of $HfO_{2}/HfSi_{x}O_{y}$ as alternative gate dielectrics in MOS devices (MOS 소자의 대체 게이트 산화막으로써 $HfO_{2}/HfSi_{x}O_{y}$ 의 구조 및 전기적 특성 분석)

  • 강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.45-49
    • /
    • 2001
  • We have investigated physical and electrical properties of the Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin film for alternative gate dielectrics in the metal-oxide-semiconductor device. The oxidation of Hf deposited directly on the Si substrate results in the H $f_{x}$/ $O_{y}$ interfacial layer and the high-k Hf $O_2$film simultaneously. Interestingly, the post-oxidation N2 annealing of the H102/H1Si70y thin films reduces(increases) the thickness of an amorphous HfS $i_{x}$/ $O_{y}$ layer(Hf $O_2$ layer). This phenomenon causes the increase of the effective dielectric constant, while maintaining the excellent interfacial properties. The hysteresis window in C-V curves and the midgap interface state density( $D_{itm}$) of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin films less than 10 mV and ~3$\times$10$^{11}$ c $m^{-2}$ -eV without post-metallization annealing, respectively. The leakage current was also low (1$\times$10-s A/c $m^2$ at $V_{g}$ = +2 V). It is believed that these excellent results were obtained due to existence of the amorphous HfS $i_{x}$/ $O_{y}$ buffer layer. We also investigated the charge trapping characteristics using Fowler-Nordheim electron injection: We found that the degradation of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ gate oxides is more severe when electrons were injected from the gate electrode.e electrode.e.e electrode.e.

  • PDF

The NAND Type Flash EEPROM using the Scaled SCNOSFET (Scaled SONOSFET를 이용한 NAND형 Flash EEPROM)

  • Kim, Ju-Yeon;Kim, Byeong-Cheol;Kim, Seon-Ju;Seo, Gwang-Yeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The SNOSFET memory devices with ultrathin ONO(tunnel oxide-nitride-blocking oxide) gate dielectric were fabricated using n-well CMOS process and investigated its characteristics. The thicknesses of tunnel oxide, nitride and blocking oxide were $23{\AA},\; 53{\AA}\; and\; 33{\AA}$, respectively. Auger analysis shows that the ONO layer is made up of $SiO_2(upper layer of blocking oxide)/O-rich\; SiO_x\N\_y$. It clearly shows that the converting layer with $SiO_x\N\_y(lower layer of blocking oxide)/N-rich SiO_x\N\_y(nitride)/O-rich SiO_x\N\_y(tunnel oxide)$. It clearly shows that the converting layer with $SiO_x\N\_y$ phase exists near the interface between the blocking oxide and nitride. The programming condition of +8 V, 20 ms, -8 V, 50 ms is determined and data retention over 10 years is obtained. Under the condition of 8 V programming, it was confirmed that the modified Fowler-Nordheim tunneling id dominant charge transport mechanism. The programmed threshold voltage is distributed less than 0.1 V so that the reading error of memory stated can be minimized. An $8\times8$ NAND type flash EEPROM with SONOSFET memory cell was designed and simulated with the extracted SPICE parameters. The sufficient read cell current was obtained and the upper limit of $V_{TH}$ for write state was over 2V.

  • PDF

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Annelaing Effects on the Dielectric Properties of the (Ba, Sr) $TiO_3$Films on $RuO_2$Bottom Electrodes

  • Park, Young-Chul;Lee, Joon;Lee, Byung-Soo
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.274-278
    • /
    • 1997
  • (Ba, Sr) TiO$_3$(BST) thin films were prepared on RuO$_2$/Si substrates by rf magnetron sputtering and annealing was followed at temperatures ranging from 550 to 80$0^{\circ}C$ in $N_2$or $O_2$atmosphere. The effects of annealing conditions on the properties of BST film deposited on RuO$_2$bottom electrodes were investigated. It was found that the crystallinity. surface roughness, and grain size of BST films vary with the annealing temperature but they are not dependent upon the annealing atmosphere. The flat region in the current-voltage (I-V) curves of BST capacitors shortened with increasing annealing temperature under both atmospheres. This is believed to be due to the lowering of potential barrier caused by unstable interface and the increase of charge The shortening of the flat region by $O_2$annealing was more severe than that by $N_2$-annealing. As a result, there was no flat region when the films were annealed at 700 and 80$0^{\circ}C$ in $O_2$atmosphere. The dielectric properties of BST films were improved by annealing in either atmosphere. however, a degradation with frequency was observed when the films were annealed at relatively high temperature under $O_2$atmosphere.

  • PDF

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF

Computerized Order Communication System for Out-patients' Clinic Using Personal Computer and Local Area Network(II) (PC 및 LAN을 이용한 외래처방 전달 시스템(II))

  • Huh, Jae-Man;Kim, Ji-Hae;Kim, Nam-Hyun;Kim, Won-Ki;Kim, Do-Nyun;Chang, Byung-Chul;Cho, Bum-Koo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.97-99
    • /
    • 1992
  • After development of order communication system for out-patients using PC and LAN in May 1992, this system had been tested for 2 months. The system also use Host computer(IBM 9221-170) as a data bank and communicats wi th emulation card(3270 emulator. Interlink Inc., Korea). Since September 1992, this system(named YOUSEI-PC) has been running successfully in the Yonsei Cardiovascular Center of the Severance Hospital, Yonsei University College of Medicine. After introducing this system, it enables patients to receive drugs wi thin 30 minutes after prescription and revealed effective system not to reduce waiting time for the patients but also to remove charge-troubling(due to mis-entry of prescription). This system also seems to be effective in terms of office automatism for hospital management. However users, usually physitions, required more friendly and easy system to operate and we thought that the most important one to successfully introduce order communication computer system in the hospital is user interface.

  • PDF

Temperature-dependent Sb-induced facetting of Si(5 5 12)-$2{\times}1$ from (225)/(112) to (113)/(335): Role of Sb-inserted 5-7-5 rings of Si surfaces.

  • Dugerjav, Otgonbayar;Kim, Hi-Dong;Duvjir, Ganbat;Li, Huiting;Seo, Jae-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.89-89
    • /
    • 2010
  • The atomic structure of Sb/Si(5 5 12)-$2{\times}1$ surface, deposited at room temperature (RT) and post-annealed, has been identified by scanning tunneling microscopy and the corresponding interface has been studied by synchrotron core-level photoemission spectroscopy. With 0.3-nm Sb deposition at RT and postannealing at $600^{\circ}C$, the surface has been facetted to (225)-$2{\times}1$ and (112)-$1{\times}1$, and its Si 2p has shown that all the Si 2p surface components have disappeared, while the single Sb-Si interfacial component has appeared. Such results indicate that all of surface Si atoms are replaced by Sb atoms and the charge is transferred from Si to passivating Sb-atoms at the top layer. With subsequent postannealing up to $700^{\circ}C$, the surface has been facetted to (113)-$2{\times}2$ and (335)-$4{\times}2$, still having Sb-Si interfacial component and partially re-exposed Si surface components. From the present study, the role of surfactant atom, Sb, as well as the thermal-stabilization of Sb-passivated high-index Si surface will be exposed. Especially, the key role of the Sb/Si(113)-$2{\times}2$, composed of Rebonded-Dimer-Rebonded atom 1D structures, for stabilization will be discussed.

  • PDF

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF