• Title/Summary/Keyword: interface behaviour

Search Result 188, Processing Time 0.032 seconds

Numerical study of performance of soil-steel bridge during soil backfilling

  • Beben, Damian
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.571-587
    • /
    • 2012
  • This paper presents results of a numerical analysis performed on a corrugated steel plate (CSP) bridge during a backfilling process. The analysed bridge structure was a box culvert having a span of 12315 mm as well as a clear height of 3550 mm. Obtained calculation results were compared with the experimental ones. The paper is presented with the application of the Fast Lagrangian Analysis of Continua (FLAC) program based on the finite differences method (FDM) to determine behaviour of the soil-steel bridge structure during backfilling. The assumptions of a computational 2D model of soil-steel structure with a non-linear interface layer are described. Parametric analysis of the interface element is also given in order to receive the most realistic calculation results. The method based on this computational model may be used with large success to design calculations of this specific type of structure instead of the conventional and fairly inaccurate analytical methods. The conclusions drawn from such analysis can be helpful mostly for the assessment of the behaviour of steel-soil bridge structures under loads of backfilling. In consideration of an even more frequent application of this type of structure, conclusions from the conducted analysis can be generalized to a whole class of similar structural bridge solutions.

Investigation of a new steel-concrete connection for composite bridges

  • Papastergiou, Dimitrios;Lebet, Jean-Paul
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.573-599
    • /
    • 2014
  • A new type of connection for steel-concrete composite bridges was developed by the Steel Structures Laboratory of Ecole Poytechinque $F{\acute{e}}d{\acute{e}}rale$ de Lausanne. Resistance to longitudinal shear is based on the development of shear stresses in the confined interfaces which form the connection. Confinement is provided by the reinforced concrete slab which encloses the connection and restrains the uplift (lateral separation) of the interfaces by developing normal stresses. The experimental investigation of the interfaces, under static and cyclic loading, enabled the development of the laws describing the structural behaviour of each interface. Those laws were presented by the authors in previous papers. The current paper focuses on the continuity of the research. It presents the experimental investigation on the new connection by means of push-out tests on specimens submitted to static and cyclic shear loading. Investigation revealed that the damage in the connection, due to cyclic loading, is expressed by the accumulation of a residual slip. A safe fatigue failure criterion is proposed for the connection which enabled the verification of the connection for the fatigue limit state with respect to the limit of fatigue. A numerical model is developed which takes into account the laws describing the interface behaviour and the analytical expressions for the confinement effect, the latter obtained by performing finite element analysis. This numerical model predicts the shear resistance of the connection and enables to assess its fatigue limit which is necessary for the fatigue design proposed.

Expression Analysis System of Game Player based on Multi-modal Interface (멀티 모달 인터페이스 기반 플레이어 얼굴 표정 분석 시스템 개발)

  • Jung, Jang-Young;Kim, Young-Bin;Lee, Sang-Hyeok;Kang, Shin-Jin
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.7-16
    • /
    • 2016
  • In this paper, we propose a method for effectively detecting specific behavior. The proposed method detects outlying behavior based on the game players' characteristics. These characteristics are captured non-invasively in a general game environment and add keystroke based on repeated pattern. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players was used to analyze high-dimensional game-player data for a detection effect of repeated behaviour pattern. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. In addition, Repeated behaviour pattern can be analysed possible. The proposed method can also be used for feedback and quantification about analysis of various interactive content provided in PC environments.

Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles (사용 중인 단독 및 군말뚝의 측면에서 실시된 터널굴착으로 인한 말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.337-356
    • /
    • 2012
  • Three-dimensional (3D) numerical analyses have been performed to study the behaviour of single piles and grouped piles to adjacent tunnelling in the lateral direction of the pile. In the numerical analyses, the interaction between the tunnel, the pile and the soil next to the piles and shear transfer mechanism have been analysed allowing soil slip at the pile-soil interface by using interface elements. The study includes the shear stresses at the soil next to the pile, the axial force distributions on the pile and the pile settlement. It has been found that existing elastic solutions may not accurately estimate the pile behaviour since several key issues are excluded. Due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, the shear stresses and axial force distributions along the pile change drastically. Downward shear stress develops above the tunnel springline while upward shear stress is mobilised below the tunnel springline, resulting in a compressive force on the pile. In addition, mobilisation of shear strength at the pile-soil interface was found to be a key factor governing pile-soil-tunnelling interaction. It has been found that grouped piles are less influenced by the tunnelling than the single pile in terms of the axial pile forces. The reduction of apparent allowable pile capacity due to pile settlement resulted from the tunnelling seemed to be insignificant.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

Analytical solution of two-layer beam including interlayer slip and uplift

  • Kroflic, Ales;Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.667-683
    • /
    • 2010
  • A mathematical model and its analytic solution for the analysis of stress-strain state of a linear elastic two-layer beam is presented. The model considers both slip and uplift at the interface. The solution is employed in assessing the effects of transverse and shear contact stiffnesses and the thickness of the interface layer on behaviour of nailed, two-layer timber beams. The analysis shows that the transverse contact stiffness and the thickness of the interface layer have only a minor influence on the stress-strain state in the beam and can safely be neglected in a serviceability limit state design.

MOLECULAR DYNAMICS SIMULATION OF INDENTATION ON SILVER COATED COPPER NANOSTRUCTURE

  • Kim, Am-Kee;Trandinh, Long;Kim, Il-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1794-1799
    • /
    • 2008
  • The effect of misfit on the indentation behaviour of silver coated copper multilayer was studied by molecular dynamics simulation. It was found that the misfit bands on interface formed by the mismatch of lattice structure between copper and silver in slip direction [110] and the dislocation band width depended on the mismatched lattice constants of materials. More dislocations were created and glided by indentation, which created a "four-wing flower" structure consisting of pile. up of dislocation at the interface. The size of "flower" depended on the thickness of silver layer. The critical thickness for "flower" was approximately 4nm above which the "flower" disappeared. As the result, deformation mechanisms such as dislocation pile-up, dislocation cross-slip and movement of misfit dislocation were revealed. Only silver atoms in the dislocation pile-up were involved in the creation of the "flower" while the dislocations in copper were glided in slip direction on interface.

  • PDF

Simulation of fracture in plain concrete modeled as a composite material

  • Bui, Thanh T.;Attard, Mario M.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.499-516
    • /
    • 2005
  • A composite model is used to represent the heterogeneity of plain concrete consisting of coarse aggregates, mortar matrix and the mortar-aggregate interface. The composite elements of plain concrete are modeled using triangular finite element units which have six interface nodes along the sides. Fracture is captured through a constitutive single branch softening-fracture law at the interface nodes, which bounds the elastic domain inside each triangular unit. The inelastic displacement at an interface node represents the crack opening or sliding displacement and is conjugate to the internodal force. The path-dependent softening behaviour is developed within a quasi-prescribed displacement control formulation. The crack profile is restricted to the interface boundaries of the defined mesh. No re-meshing is carried out. Solutions to the rate formulation are obtained using a mathematical programming procedure in the form of a linear complementary problem. An event by event solution strategy is adopted to eliminate solutions with simultaneous formation of softening zones in symmetric problems. The composite plain concrete model is compared to experimental results for the tensile crack growth in a Brazilian test and three-point bending tests on different sized specimens. The model is also used to simulate wedge-type shear-compression failure directly under the loading platen of a Brazilian test.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Shear Tests Under Constant Normal Stiffness for Granite-concrete Interface (화강암 절단면과 콘크리트 부착면에 대한 일정강성도 전단시험)

  • 조천환;이명환;유한규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • The purpose of this paper is to make an understanding of fundamental mechanism of shear behaviour between rock and concrete interfaces in the pile socketed into granite. The interface of pile socketed in rock can be modeled in laboratory tests by resolving the axi-symmetric pile situation into the two dimensional situation under CNS(constant normal stiffness) direct shear condition. In this paper, the granite core samples were used to simulate the interface condition of piles socketed in granite in our country. The samples were prepared in the laboratory to simulate field condition, roughness(angle and height), stress boundary condition, and then tested by CNS direct shear tests. This paper describes shearing behaviour of socket piles into domestic granite through the analysis of CNS test results. It was found out that the peak shear strength increases with the angle of asperity and CNS value, and also the dilation increases with the angle of asperity but decreases with the CNS value.