• Title/Summary/Keyword: interface angularities

Search Result 2, Processing Time 0.014 seconds

Mechanism of failure in the Semi-Circular Bend (SCB) specimen of gypsum-concrete with an edge notch

  • Fu, Jinwei;Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi;Guo, Mengdi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.81-91
    • /
    • 2022
  • The effects of interaction between concrete-gypsum interface and edge crack on the failure behavior of the specimens in senicircular bend (SCB) test were studied in the laboratory and also simulated numerically using the discrete element method. Some quarter circular specimens of gypsum and concrete with 5 cm radii and hieghts were separately prepared. Then the semicircular testing specimens were made by attaching one gypsum and one concrete sample to one another using a special glue and one edge crack is produced (in the interface) by do not using the glue in that part of the interface. The tensile strengths of concrete and gypsum samples were separately measured as 2.2 MPa and 1.3 MPa, respectively. during all testing performances a constant loading rate of 0.005 mm/s were stablished. The proposed testing method showed that the mechanism of failure and fracture in the brittle materials were mostly governed by the dimensions and number of discontinuities. The fracture toughnesses of the SCB samples were related to the fracture patterns during the failure processes of these specimens. The tensile behaviour of edge notch was related to the number of induced tensile cracks which were increased by decreasing the joint length. The fracture toughness of samples was constant by increasing the joint length. The failure process and fracture pattern in the notched semi-circular bending specimens were similar for both methods used in this study (i.e., the laboratory tests and the simulation procedure using the particle flow code (PFC2D)).

Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch

  • Sarfarazi, Vahab;Haeri, Hadi;Ebneabbasi, P.;Bagheri, Kourosh
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.51-67
    • /
    • 2019
  • In this paper, the anisotropy of tensile behaviours of layered rocks consisting internal notch has been investigated using particle flow code. For this purpose, firstly calibration of PFC2D was performed using Brazilian tensile strength. Secondly Brazilian test models consisting bedding layer was simulated numerically. Thickness of layers was 10 mm and layered angularity was $90^{\circ}$, $75^{\circ}$, $60^{\circ}$, $45^{\circ}$, $30^{\circ}$, $15^{\circ}$ and $0^{\circ}$. The strength of bedding interface was too high. Each model was consisted of one internal notch. Notch length is 1 cm, 2 cm and 4 cm and notch angularities are $60^{\circ}$, $45^{\circ}$, $30^{\circ}$, $15^{\circ}$ and $0^{\circ}$. Totally, 90 model were tested. The results show that failure pattern was affected by notch orientation and notch length. It's to be noted that layer angle has not any effect on the failure pattern. Also, Brazilian tensile strength is affected by notch orientation and notch length.