• 제목/요약/키워드: interest point extraction

검색결과 44건 처리시간 0.026초

SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구 (Face Recognition based on SURF Interest Point Extraction Algorithm)

  • 강민구;추원국;문승빈
    • 전자공학회논문지CI
    • /
    • 제48권3호
    • /
    • pp.46-53
    • /
    • 2011
  • 본 논문에서는 대표적인 특징점 추출 알고리즘인 SURF (Speeded Up Robust Features)를 이용한 얼굴 인식 방법을 소개한 다. 일반적으로, SURF를 이용한 물체 인식은 특징점 추출 및 정합만을 수행하지만, 본 논문에서 제안하는 SURF를 이용한 얼굴 인식 방법은 특징점 추출 및 정합뿐만 아니라 얼굴 영상 회전 및 특징점 검증을 추가로 수행한다. 얼굴 영상 회전은 특징점의 수를 증가시키기 위해 수행되며, 특징점 검증은 정확하게 정합된 특징점들을 찾기 위해 수행된다. 비록 본 논문에서 제안한 SURF를 이용한 얼굴 인식 방법은 PCA를 이용한 방법보다 연산 시간이 더 요구되었지만, 인식률은 보다 더 높았다. 이러한 실험 결과를 통해, 특징점 추출 알고리즘도 얼굴 인식에 적용할 수 있음을 확인할 수 있었다.

Distinct Point Detection : Forstner Interest Operator

  • Cho, Woo-Sug
    • 한국측량학회지
    • /
    • 제13권2호
    • /
    • pp.299-307
    • /
    • 1995
  • 본 논문은 수치영상으로부터 Digital Photogrammetry와 Computer Vision 분야에서 위치결정 및 3차원 정보의 자동추출을 위한 기본단계인 Distinct Point 추출기법중 F rsner interest operate에 관한 연구이다. Gradien에 기초한 Forstner interest operator는 Orientation-invariant의 특징을 가지고 있으며 소정의 Subpixel정확도를 얻을 수 있다. 본 연구에서는 Fostner interest operator에서 얻어진 Comer Points와 Circular Features를 구분하기 위한 방법으로 F-test를 적용하였으며 Nosie가 Forstner interest operator에 미치는 영향을 고찰하였고 실제 사진영상에 Forstner interest operator를 도입하여 실효성에 바탕을 둔 적용 여부를 검증하였다.

  • PDF

얼굴 인식의 정확도 향상을 위한 SURF 특징점에서의 Gabor 기술어 추출 (Gabor Descriptors Extraction in the SURF Feature Point for Improvement Accuracy in Face Recognition)

  • 이재용;김지은;오승준
    • 방송공학회논문지
    • /
    • 제17권5호
    • /
    • pp.808-816
    • /
    • 2012
  • 얼굴 인식은 여러 분야에서의 활발한 연구를 통해 많은 발전이 있었고, 현재도 활발한 연구가 진행되고 있다. 최근 들어 물체 인식에 주로 사용되어온 특징점 추출 알고리즘이 얼굴 인식에도 적용되고 있다. 본 논문은 대표적인 특징점 추출 알고리즘인 SURF를 이용한다. 사람은 얼굴의 형태 및 구조가 유사하므로 물체를 인식하는 경우보다 분별력이 떨어지기 때문에 SURF를 이용한 얼굴인식의 정확도는 낮은 편이다. 이를 개선하고자 본 논문에서는 SURF를 통해 추출한 특징점에서 Gabor 웨이블릿 변환을 사용해 기술어를 추출하는 얼굴 인식 방법을 제안한다. 실험 결과에서 제안하는 방법이 기존 SURF 기반의 얼굴 인식에 비해 정확도가 약 23% 향상된 것을 확인하였다.

새로운 관심영역 추출 방법을 이용한 역광보정 (Backlight Compensation by Using a Novel Region of Interest Extraction Method)

  • 성준모;이성신;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권6호
    • /
    • pp.321-328
    • /
    • 2017
  • 우리는 빛의 정도에 따라 이미지의 밝기와 채도, 대비를 보정하고 더 나아가 역광을 보정하는 기술을 구현하였다. 역광보정은 자동이나 수동으로 할 수 있는데, 수동으로 역광보정을 적용하기 위해서는 먼저 관심영역을 지정해 주어야 한다. 관심영역은 사진 속 원하는 사물의 윤곽선을 이어줌으로써 선택한다. 우리는 자석 올가미를 이용하여 사용자가 섬세한 선택을 가능하게 하였다. 기존 올가미 기능은 시작점과 끝점을 일치시켜 주어야 하는 단점이 있었으나 제안하는 올가미 기능은 시작점과 끝점을 일치시키지 않아도 관심영역을 선택할 수 있는 장점이 있다. 또한 사용자가 이진화 임계값과 질감추출을 위한 k-means 군집의 개수를 선택할 수 있도록 하여 다양한 역광보정 결과를 자동으로 얻을 수 있게 하였다.

건물의 높이 정보 분석을 위한 WorldView-2 스테레오 영상의 정합점 추출방법 평가 (Evaluation on Tie Point Extraction Methods of WorldView-2 Stereo Images to Analyze Height Information of Buildings)

  • 김예지;김용일
    • 한국측량학회지
    • /
    • 제33권5호
    • /
    • pp.407-414
    • /
    • 2015
  • 특징점은 주로 높이의 변화가 있는 위치에 존재하여 DSM 생성에 의미 있는 화소일 수 있으며, 정확하고 신뢰할 만한 정합 결과를 도출하는 중요한 역할을 한다. 이러한 특징점을 위성영상 내의 건물에서 추출하고 스테레오 영상 간의 정합을 수행하기 위해 사용자의 주관적인 분석을 통한 방법이 주로 쓰여 왔으나 경제적 및 시간적 비용이 드는 단점이 있다. 이러한 부분을 보완하기 위해 본 연구에서는 건물의 높이 정보를 추출하기 위해서 Harris-affine 특징점 추출기법과 SIFT 서술자를 사용한 스테레오 위성영상의 정합점 추출방법을 제시하였다. Harris-affine 추출기법으로 건물에 존재하는 특징점을 추출하고, 스케일 등의 영향이 적은 SIFT 서술자를 활용하여 효과적으로 정합점을 추출하였다. 또한, 탐색범위를 사용하고 영상 내 정합쌍의 각도를 고려하여 좀 더 효과적인 정합점 추출 방법을 제시하였다. 제안방법으로 추출된 정합점을 사용하여 영상 내에 존재하는 건물의 높이 정보를 실제로 분석하여 제안 방법이 수동 방법과 비교하여 2m 미만의 RMSE 값을 가지는 것을 확인하였다.

특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출 (GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea)

  • 이계동;윤종성
    • 한국측량학회지
    • /
    • 제37권4호
    • /
    • pp.211-218
    • /
    • 2019
  • 국토교통부에서는 2019년과 2020년에 차세대 중형위성 1호 및 2호 기를 발사하여, 지구환경 모니터링 및 접근불능지역에 대한 수치지도 제작에 활용하고자 하고 있다. 차세대 중형 위성을 통해 수집된 위성영상정보는 지구환경 모니터링, 지형도 제작, 재난재해 예방을 위한 분석 등 다양한 분야에 활용이 가능하다. 이와 같이 다양한 분야에 활용하기 위해서는 위성영상의 위치정확도 확보가 중요하며, 위성영상의 정밀기하수립을 위해 지표상의 정확한 지상기준점(GCP: Ground Control Point)을 사용하여 정밀 센서 모델을 수립하는 과정이 필요하다. 또한, 다양한 분야의 활용을 위해 정사영상 구축을 위한 단계별 자동화가 필요하며, 이를 위해 위성영상 GCP 칩의 DB (Data Base)가 체계적으로 구축되어야 한다. 따라서 본 연구에서는 위성영상의 정밀기하수립을 위하여 GCP를 자동 추출하는 다양한 기법들을 분석하여 최적의 방법을 도출하고자 한다.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

매트릭스 패턴 영상의 관심 영역 추출 방법 및 하드웨어 구현 (Region of Interest Extraction Method and Hardware Implementation of Matrix Pattern Image)

  • 조호상;김근준;강봉순
    • 한국정보통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.940-947
    • /
    • 2015
  • 본 논문에서는 기존의 터치 센서방법과 초음파나 레이저를 사용하는 방법이 아닌 디스플레이에 프린트된 매트릭스 패턴 영상을 이용하여 위치 정보를 추출하는 시스템의 패턴 영상의 특징점을 찾고 관심 영역의 영상을 추출하는 방법을 제안하였다. 제안하는 방법은 패턴 영상의 조도값과 패턴의 특징을 이용하여 촬영된 영상의 회전된 각도와 신뢰성 있는 특징점을 찾고 관심영역을 추출한다. 성공적인 관심 영역 추출을 위해서 다양한 각도에서 판서된 패턴영상을 이용하여 위치 관심영역 추출을 테스트하였고 성공적으로 관심영역을 추출하는 것을 확인하였다. 제안한 알고리즘은 OpenCV와 Window 프로그램을 사용하여 소프트웨어적으로 검증하고, 또한, Verilog-HDL을 사용하여 하드웨어 시스템을 설계하고, Xilinx FPGA(xc6vlx760) 보드를 이용하여 검증하였다.

모양 기반 이미지 분류를 위한 최적의 우세점 추출 (Extraction of Optimal Interest Points for Shape-based Image Classification)

  • 조성택;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.362-371
    • /
    • 2003
  • 이 논문에서는 이미지 데이타베이스에서 모양 특징 기반 이미지 분류와 인덱싱을 위해 객체의 윤곽선 특성을 고려해 임계값을 동적으로 결정하여 최적 우세점을 추출하는 알고리즘을 제안한다. 동적 임계값결정은 원본 모양의 윤곽선 길이 비와 근사화된 다각형의 둘레 길이 비를 알고리즘 수행시 점진적으로 검사하는 방법을 사용한다. 이 알고리즘은 윤곽선 특징을 반영하여 동적인 임계값 검사를 함으로써 의사점 수를 최대한 줄이며 최소 우세점만으로 모양 특징 정보를 추출할 수 있는 장점을 보인다. 제안한 방법은 객체의 윤곽선을 이루는 n개의 점에서 m개의 최적 우세점을 찾는데 평균 O(nlogn)이 걸린다. 최적화 평가는 7가지 서로 다른 특성을 가지는 70개의 합성 모양과 1,100개의 어류 모양에 대해 알고리즘을 적용하고 피 결과에 대해 평가 함수를 구성하여 수행하였다. 최적화율은 실험 모양들에 대해 평균0.92를 보였으며 기존 알고리즘에 대해 약 14% 최적화 성능 개선을 보였다. 제안한 알고리즘을 통해 추출한 모양 특징 정보는 정규화를 통해 이미지 분류와 인덱싱, 유사도 검색에 활용할 수 있다.

깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출 (ROI Based Object Extraction Using Features of Depth and Color Images)

  • 류가애;장호욱;김유성;류관희
    • 한국콘텐츠학회논문지
    • /
    • 제16권8호
    • /
    • pp.395-403
    • /
    • 2016
  • 최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.