• Title/Summary/Keyword: interactive visualization

Search Result 182, Processing Time 0.021 seconds

Volumetric Data Encoding Using Daubechies Wavelet Filter (Daubechies 웨이블릿 필터를 사용한 볼륨 데이터 인코딩)

  • Hur, Young-Ju;Park, Sang-Hun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.639-646
    • /
    • 2006
  • Data compression technologies enable us to store and transfer large amount of data efficiently, and become more and more important due to increasing data size and the network traffic. Moreover, as a result of the increase of computing power, volumetric data produced from various applied science and engineering fields has been getting much larger. In this Paper, we present a volume compression scheme which exploits Daubeches wavelet transform. The proposed scheme basically supports lossy compression for 3D volume data, and provides unit-wise random accessibility. Since our scheme shows far lower error rates than the previous compression methods based on Haar filter, it could be used well for interactive visualization applications as well as large volume data compression requiring image fidelity.

Level Scale Interface Design for Real-Time Visualizing Large-Scale Data (대용량 자료 실시간 시각화를 위한 레벨 수준 표현 인터페이스 설계)

  • Lee, Do-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 2008
  • Various visualizing methods have been proposed according to the input and output types. To show complex and large-scale raw data and information. LOD and special region scale method have been used for them. In this paper, I propose level scale interface for dynamic and interactive controlling large scale data such as bio-data. The method has not only advantage of LOD and special region scale but also dynamic and real-time processing. In addition, the method supports elaborate control from large scale to small one for visualization on a region in detail. Proposed method was adopted for genome relationship visualization tool and showed reasonable control method.

  • PDF

A Case Study of Infographics for National Defense - Focusing on the Datajournalism of Afghanistan War in Guardian (국방분야에서 인포그래픽 적용사례 연구 - 영(英) 가디언지 아프가니스탄전 데이터저널리즘을 중심으로)

  • Kim, Dong Hwan
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • Recently, Big Data is a buzzword in the creative economy generation. The organizations related to spatial information society focus on building the spatial big data systems. As spatial big data is a combination of spatial information and big data, the data visualization is essential in order to utilize them efficiently. One of the great methodologies for data visualization is infographics. Nationally, Chousn.com initiated the infographics news in 2010. Korean Administration Branches also recognized the importance of infographic and they adopted infographics for their briefings from 2013. Internationally, Visual.ly is leading company in the infographics market and they produced noticeable interactive infographics for Egypt Parliamentary Elections results. In the defense part, Guardian's datajournalism of Afghanistan war log was a good example of utilizing infographics. Throughout the research, five requirements are extracted. First source data should have precision and accuracy in terms of time and space manner. Second, infographics images have a compressibility. Third, the infographics is properly processed for military commanders. Fourth, sharing, openness and communication are essential for high quality infographic. Lastly, infographics should be an analytic tool for predicting future event based on the past data. Infographics is not a direct representation of data but an analytic tool for helping user's choice and decision in critical moments.

A Web Application for Open Data Visualization Using R (R 이용 오픈데이터 시각화 웹 응용)

  • Kim, Kwang-Seob;Lee, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.72-81
    • /
    • 2014
  • As big data are one of main issues in the recent days, the interests on their technologies are also increasing. Among several technological bases, this study focuses on data visualization and R based on open source. In general, the term of data visualization can be summarized as the web technologies for constructing, manipulating and displaying various types of graphic objects in the interactive mode. R is an operating environment or a language for statistical data analysis from basic to advanced level. In this study, a web application with these technological aspects and components is newly implemented and exemplified with data visualization for geo-based open data provided by public organizations or government agencies. This application model does not need users' data building or proprietary software installation. Futhermore it is designed for users in the geo-spatial application field with less experiences and little knowledges about R. The results of data visualization by this application can support decision making process of web users accessible to this service. It is expected that the more practical and various applications with R-based geo-statistical analysis functions and complex operations linked to big data contribute to expanding the scope and the range of the geo-spatial application.

Multi GPU Based Image Registration for Cerebrovascular Extraction and Interactive Visualization (뇌혈관 추출과 대화형 가시화를 위한 다중 GPU기반 영상정합)

  • Park, Seong-Jin;Shin, Yeong-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.445-449
    • /
    • 2009
  • In this paper, we propose a computationally efficient multi GPU accelerated image registration technique to correct the motion difference between the pre-contrast CT image and post-contrast CTA image. Our method consists of two steps: multi GPU based image registration and a cerebrovascular visualization. At first, it computes a similarity measure considering the parallelism between both GPUs as well as the parallelism inside GPU for performing the voxel-based registration. Then, it subtracts a CT image transformed by optimal transformation matrix from CTA image, and visualizes the subtracted volume using GPU based volume rendering technique. In this paper, we compare our proposed method with existing methods using 5 pairs of pre-contrast brain CT image and post-contrast brain CTA image in order to prove the superiority of our method in regard to visual quality and computational time. Experimental results show that our method well visualizes a brain vessel, so it well diagnose a vessel disease. Our multi GPU based approach is 11.6 times faster than CPU based approach and 1.4 times faster than single GPU based approach for total processing.

Interactive Visualization Technique for Adaptive Mesh Refinement Data Using Hierarchical Data Structures and Graphics Hardware (계층적 자료구조와 그래픽스 하드웨어를 이용한 적응적 메쉬 세분화 데이타의 대화식 가시화)

  • ;Chandrajit Bajaj
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.360-370
    • /
    • 2004
  • Adaptive mesh refinement(AMR) is one of the popular computational simulation techniques used in various scientific and engineering fields. Although AMR data is organized in a hierarchical multi-resolution data structure, traditional volume visualization algorithms such as ray-casting and splatting cannot handle the form without converting it to a sophisticated data structure. In this paper, we present a hierarchical multi-resolution splatting technique using k-d trees and octrees for AMR data that is suitable for implementation on the latest consumer PC graphics hardware. We describe a graphical user interface to set transfer function and viewing / rendering parameters interactively. Experimental results obtained on a general purpose PC equipped with an nVIDIA GeForce3 card are presented to demonstrate that the proposed techniques can interactively render AMR data(over 20 frames per second). Our scheme can easily be applied to parallel rendering of time-varying AMR data.

Effective Volume Rendering and Virtual Staining Framework for Visualizing 3D Cell Image Data (3차원 세포 영상 데이터의 효과적인 볼륨 렌더링 및 가상 염색 프레임워크)

  • Kim, Taeho;Park, Jinah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, we introduce a visualization framework for cell image data obtained from optical diffraction tomography (ODT), including a method for representing cell morphology in 3D virtual environment and a color mapping protocol. Unlike commonly known volume data sets, such as CT images of human organ or industrial machinery, that have solid structural information, the cell image data have rather vague information with much morphological variations on the boundaries. Therefore, it is difficult to come up with consistent representation of cell structure for visualization results. To obtain desired visual representation of cellular structures, we propose an interactive visualization technique for the ODT data. In visualization of 3D shape of the cell, we adopt a volume rendering technique which is generally applied to volume data visualization and improve the quality of volume rendering result by using empty space jittering method. Furthermore, we provide a layer-based independent rendering method for multiple transfer functions to represent two or more cellular structures in unified render window. In the experiment, we examined effectiveness of proposed method by visualizing various type of the cell obtained from the microscope which can capture ODT image and fluorescence image together.

Real-Time Terrain Visualization with Hierarchical Structure (실시간 시각화를 위한 계층 구조 구축 기법 개발)

  • Park, Chan Su;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.311-318
    • /
    • 2009
  • Interactive terrain visualization is an important research area with applications in GIS, games, virtual reality, scientific visualization and flight simulators, besides having military use. This is a complex and challenging problem considering that some applications require precise visualizations of huge data sets at real-time rates. In general, the size of data sets makes rendering at real-time difficult since the terrain data cannot fit entirely in memory. In this paper, we suggest the effective Real-time LOD(level-of-detail) algorithm for displaying the huge terrain data and processing mass geometry. We used a hierarchy structure with $4{\times}4$ and $2{\times}2$ tiles for real-time rendering of mass volume DEM which acquired from Digital map, LiDAR, DTM and DSM. Moreover, texture mapping is performed to visualize realistically while displaying height data of normalized Giga Byte level with user oriented terrain information and creating hill shade map using height data to hierarchy tile structure of file type. Large volume of terrain data was transformed to LOD data for real time visualization. This paper show the new LOD algorithm for seamless visualization, high quality, minimize the data loss and maximize the frame speed.

IV-TAP : Integrated Valve Train system Analysis Program (IV-TAP : 밸브트레인 통합 해석 프로그램)

  • 김지영;조명래;신흥주;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.258-262
    • /
    • 2000
  • This paper reports on the development of the analysis program of the valve train system, IV-TAP. It is essential to verify the stability of the design and to improve the performance of the system. In order to do that effi챠ently, it is required that integrated and interactive simulation analysis program. IV-TAP is developed in the base of the object-oriented, capsulation, modulization, OLE(objected linking and embedding) and variational design theory. So it contain the expandability and flexibility of the structure. In additon to that, it is programed to make the convenient user interface by using the visualization programming. It can support the modification of the valve element as well as the development of the valve system in the beginning. It is expected to reduce the money and effort for design the valve train system.

  • PDF

Virtual Domino: Interactive Physics Simulation and Experience

  • Shahab, Qonita M.;Kwon, Yong-Moo;Ko, Hee-Dong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.954-959
    • /
    • 2006
  • Virtual Reality simulation enables immersive 3D experience of a Virtual Environment. A simulation-based VE can be used to map real world phenomena into virtual experience. This research studies on the use of Newton's physics law to demonstrate the effects of forces upon object's falling movement, and their effects towards other fallible objects. A reconfigurable simulation enables users to reconfigure the parameters of the objects involved in the simulation, so that they can see different effects from the different configurations, such as force magnitude and distance between objects. This concept is suitable for a classroom learning of physics law. Preliminary implementation is done on a PC with a joystick for 4DOF movement. The graphics is implemented by SGI OpenGL Performer. A middleware called NAVERLib that consists of Performer's modules for easy XML-based configuration is used for management of visualization, network and devices connection, and where the engine of this domino simulation is attached.

  • PDF