• Title/Summary/Keyword: interaction energies

Search Result 186, Processing Time 0.031 seconds

A Molecular Dynamics Simulation for the Moving Water Droplet on Atomistically Smooth Solid Surface (원자적으로 균일한 평판 위에서 움직이는 물 액적에 대한 분자동역학 시뮬레이션)

  • Hong, Seung-Do;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.559-564
    • /
    • 2009
  • The variation in the shape of water droplet moving on atomistically smooth solid surface in the presence of a constant body force is simulated using molecular dynamics simulation. We investigated how the advancing and receding contact angle of the moving water droplet changes on a solid surface having various characteristic energies. From the MD simulation results, we obtained the density profile defined as the number of water molecules at a given position. Then, assuming the water droplet periphery to be a circle, we calculated the contact angles by using a nonlinear fitting of the half-density contour line. The present simulation clearly shows the different profile of the advancing and receding contact angle for these three different interaction potential between the water droplet and the solid surface.

SYNTHESIS AND APPLICATION OF NEW SPIN PROBES

  • Kim, S.D.;Freeman, H.S.;Mcgregor, R.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.67-67
    • /
    • 1990
  • Three non-ionic and two anioinic spin probes, differing in size and substituent, were synthesized. Their mobility in dried nylon 6 film was investicated by the spin probe technique using electron spin resonance spectrometer. When the size of a spin probe was large and the interaction between the probe molecules and polymer chains existed, the mobility of spin probes decreased. From Arrhenius plots of rotational correlation time, one discontinuity point ($T_d$) was determined. The activation energies for rotation below and above $T_d$ were discussed in terms of the mode of probe rotation. Three spin probes could be viewed as azo dyes having a built-in nitroxide radical. Photolysis of them in dimethylformamide and in nylon 6 film was performed by exposure to 254 nm UV light in the presence of air. It was found that dyes having a built-in nitroxide radical showed better photostability than dyes derived from ${\bata}-naphthol$..

  • PDF

Studies on Cure Behaviors, Dielectric Characteristics and Mechanical Properties of DGEBA/Poly(ethylene terephthalate) Blends

  • Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.585-590
    • /
    • 2009
  • The cure behaviors, dielectric characteristics and fracture toughness of diglycidylether of bisphenol-A (DGEBA)/poly(ethylene terephthalate) (PET) blend system were investigated. The degree of conversion for the DGEBA/PET blend system was measured using Fourier transform infrared (FTIR) spectroscopy. The cure kinetics were investigated by measuring the cure activation energies ($E_a$) with dynamic differential scanning calorimetry (DSC). The dielectric characteristic was examined by dielectric analysis (DEA). The mechanical properties were investigated by measuring the critical stress intensity factor ($K_{IC}$), critical strain energy release rate ($G_{IC}$), and impact strength test. As a result, DGEBAIPET was successfully blended. The Ea of the blend system was increased with increasing PET content to a maximum at 10 phr PET. The dielectric constant was decreased with increasing PET content. The mechanical properties of the blend system were also superior to those of the neat DGEBA. These results were attributed to the increased cross-linking density of the blend system, resulting from the interaction between the epoxy group of DGEBA and the carboxyl group of PET.

MOLECULAR DYNAMICS SIMULATION OF THE INTERACTION BETWEEN CLUSTER BEAMS AND SOLID SURFACES

  • Kang, Hee-Jae;Lee, Min-Wha;Whang, Chung-Nam
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.139-147
    • /
    • 1995
  • The mechanism of the ionized cluster beam deposition has been studied using Molecular Dynamics Simulation. The Embedded Atom Method(EAM) potential were used in the simulation. The impact of a Au95-cluster on Au(100) substrate was studied for the impact energies 0.15-10eV/atom. The dependency of the impact energy of cluster beam was observed. For the cluster energy impact of 10eV per atom, the defects on surface were created and the cluster embedded into substrate as an amorphous state. For the energy of 0.5eV per atom, the defect free homoepitaxial growth was observed and atomic scale nucleation was formated, which are in good agreement with experiment. Thus molecular dynamics simulation is very useful to study the mechanism of the ionized cluster beam deposition.

  • PDF

Dipole Moments of the OH, OH$^+$, and OH$^-$Valence States by ab initio Effective Valence Shell Hamiltonian Method

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.101-105
    • /
    • 1988
  • The ab initio effective valence shell Hamiltonian method, based on quasidegenerate many-body perturbation theory, is generalized to calculate molecular properties as well as the valence state energies which have previously been determined for atoms and small molecules. The procedure requires the evaluation of effective operator for each molecular property. Effective operators are perturbatively expanded in powers of correlation and contain contributions from excitations outside of the multireference valence space. To demonstrate the validity of this method, calculations for dipole moments of several low lying valence states of OH, $OH^+$, and $OH^-$ to first order in the correlations have been performed and compared with configuration interaction calculations.

An XPS Study of YBaCuO Compounds

  • Myung-Mo Sung;Yunsoo Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 1990
  • X-ray photoelectron spectra have been obtained and comparisons have been made for 1-2-3 and 2-1-1 phases of YBaCuO compounds. The photoelectron binding energies of all the constituent elements are consistently larger for the 2-1-1 phase than for the 1-2-3 phase. The peak intensities reflect different stoichiometries of the two phases. For the superconducting 1-2-3 phase, its degradation in air and interaction with water and carbon dioxide were examined by taking core level spectra of all the elements. It appears that yttrium is the most affected by exposure to air, since it undergoes a rapid change to carbonate when water and subsequently carbon dioxide are introduced.

Monte Carlo simulations of chromium target under proton irradiation of 17.9, 22.3 MeV

  • Kara, A.;Yilmaz, A.;Yigit, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3158-3163
    • /
    • 2021
  • Chromium material is commonly used for fusion plasma facing applications because of the low neutron activation property. The Monte Carlo method is one of the useful ways to investigate the ion-target interactions. In this study, Chromium target irradiated by protons was investigated using Monte Carlo based simulation tools. In this context, the calculations of radiation damage on Chromium material irradiated with protons at 17.9 and 22.3 MeV energies were carried out using GEANT4 and SRIM codes. Besides, the cross sections for proton interaction with Chromium target were calculated by the TALYS 1.9 code using CTM + FGM, BSFGM, and GSFM level densities. As a result, GEANT4, SRIM and TALYS 1.9 codes provide a suitable tool for the predictions of radiation damage and cross cross section with proton irradiation.

Some Thiosemicarbazide Derivatives as Corrosion Inhibitors for Aluminium in Sodium Hydroxide Solution

  • Moussa, M.N.;Fouda, A.S.;Taha, F.I.;Elnenaa, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.191-195
    • /
    • 1988
  • The effect of some thiosemicarbazide derivatives on corrosion of aluminium in 2M sodium hydroxide has been studied using thermometric, weight loss and hydrogen evolution techniques. The rate of the corrosion depends on the nature of the inhibitor and its concentration, heated of hydrogenation, mode of interaction with the metal surface and formation of metallic complexes. The compounds are weakly adsorbed on the surface of aluminium and form a monolayer of the adsorbate. Values of the Arrhenius activation energies indicate agreement with those obtained for an activation controlled process.

Ab-initio DFT Modeling of Alkanethiols as Carbon Steel Corrosion Inhibitors (탄소강 부식 억제제로서 알칸 티올의 Ab-initio DFT 모델링)

  • Lgaz, Hassane;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.91-92
    • /
    • 2021
  • In the present work, we simulated and explained the bonding of three alkanethiols - hexanethiol (HT), decanethiol (DT), and 11-mercaptoundecanoic acid (MDA) - with Fe(110) surface and Fe2 clusters using Density Functional Theory (DFT) to probe the corrosion inhibition mechanisms. The interaction energies computed from periodic DFT calculations successfully predicted the experimental inhibition performance. We have found strong covalent bond formation between S(thiol) and Fe-atoms in both approaches, further confirmed by the projected density of states and electron density difference. Besides, natural bond orbital (NBO) charge distribution showed that DT had stronger electron-donation and back-donation synergic interactions with Fe-atoms.

  • PDF

Nonlinear Structure-Soil Interaction Analysis for the Suction Bucket Foundation of Offshore Wind-Turbine (해상풍력 석션버켓 기초 구조-지반 상호작용 비선형 구조해석 및 실험결과 비교)

  • Jin, Jeongin;Kim, Donghyun;Jung, Minuk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.469-475
    • /
    • 2016
  • As we are facing the shortage of oil energy, studies on renewable energy, wind energy research has been naturally getting attention. Among wind energies, ocean wind energy is relatively abundant compared to land wind energy and therefore, is getting much attention in terms of its efficiency. However, the problem is the cost. Generally, the cost ratio of the supporting structure is over 25% of the total installation cost of a offshore wind turbine system. Thus, it is very important to reduce the total installation cost of the offshore wind turbine and develop accurate analysis methodology for various offshore wind turbine foundations. In this study, nonlinear structure-soil interaction analyses have been proposed and conducted for the typical suction bucket model of an offshore wind turbine foundation, and the results were compared with experimental test data for numerical validations.