Processing math: 100%
  • Title/Summary/Keyword: interaction elements

Search Result 1,047, Processing Time 0.024 seconds

Geochemical Study on the Mobility of Dissolved Elements by Rocks-CO2-rich waters Interaction in the Kangwon Province (강원도 지역 탄산수와 암석간의 반응에 의한 용존 원소들의 유동성에 관한 지구화학적 연구)

  • 최현수;고용권;윤성택;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2002
  • In order to investigate the relative mobility (RM) of dissolved elements during processes controlling major and trace element content, the concentrations of major, minor and trace elements were reviewed from the previous data of CO2-rich waters and granites from Kangwon Province. The relative mobility of elements dissolved in CO2-rich waters is calculated from CO2-rich water/granite ratio with normalizing by sodium. The results show that gaseous input of magmatic volatile metals into the aquifer is negligible in this study area, being limited by cooling of the rising fluids. Granite leaching by weakly acidic, CO2-charged water is the overwhelming source of metals. Poorly mobile element (Al) is preferentially retained in the solid residue of weathering, while alkalis, alkaline earth and oxo-hydroxo anion forming elements (especially As and U) are mobile and released to the aqueous system. Transition metals display an intermediate behavior and are strongly dependent on either the redox conditions (Fe and Mn) or solid surface-related processes (adsorption or precipitation) (V, Zn and Cu).

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

Time dependent finite element analysis of steel-concrete composite beams considering partial interaction

  • Dias, Maiga M.;Tamayo, Jorge L.P.;Morsch, Inacio B.;Awruch, Armando M.
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.687-707
    • /
    • 2015
  • A finite element computer code for short-term analysis of steel-concrete composite structures is extended to study long-term effects under service loads, in the present work. Long-term effects are important in engineering design because they influence stress and strain distribution of the structural system and therefore contribute to the increment of deflections in these structures. For creep analysis, a rheological model based on a Kelvin chain, with elements placed in series, was employed. The parameters of the Kelvin chain were obtained using Dirichlet series. Creep and shrinkage models, proposed by the CEB FIP 90, were used. The shear-lag phenomenon that takes place at the concrete slab is usually neglected or not properly taken into account in the formulation of beam-column finite elements. Therefore, in this work, a three-dimensional numerical model based on the assemblage of shell finite elements for representing the steel beam and the concrete slab is used. Stud shear connectors are represented for special beam-column elements to simulate the partial interaction at the slab-beam interface. The two-dimensional representation of the concrete slab permits to capture the non-uniform shear stress distribution in the horizontal plane of the slab due to shear-lag phenomenon. The model is validated with experimental results of two full-scale continuous composite beams previously studied by other authors. Results are given in terms of displacements, bending moments and cracking patterns in order to shown the influence of long-term effects in the structural response and also the potentiality of the present numerical code.

Research on the Influence of Packaging Visual Elements on the Consumers' Taste Image Judgment - Take the colors and patterns of canned beer as an Example - (포장의 시각적 요소가 소비자의 미각 이미지 판단에 미치는 영향 연구 - 캔 맥주 포장의 색채와 패턴을 중심으로 -)

  • Liu, Yuan.;Oh, YongKyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1449-1460
    • /
    • 2021
  • The visual design elements of packaging play an vital role in attracting consumers' attention, forming their sense of pleasure and sensory expectations, as well as having an important impact on the actual product experience. This study aims to explore whether the colors and textures in the packaging design elements of canned beer will affect consumers' senses, judgments and taste perception of canned beer. Participants in Survey I (N=193) evaluated their expectations for beer freshness, softness, bitterness and alcohol content by observing the packaging of canned beer, then recorded whether they could get the expected experience when tasting beer, and evaluated their preference and purchase intention. In the Survey II, 4 kind of colors and 2 types of texture shapes were applied, and all participants were provided with the same beer for multivariate cross contract analysis to evaluate the specific impact of color and texture of packaging design elements on consumers' taste and the interaction between sensory judgment and taste perception.The results showed that both colors and textures had a significant affect on the sensory expectation (pre-tasting score) of canned beer, but their effects on the sensory score after tasting (actual perception)were inobvious. The analysis of the influence of the interaction between color, texture and shape on taste perception shows that when the expected packaging appearance perception is similar to the actual drinking perception (i.e., straight line and B/G or arc line and Y/R), it is more likely to obtain consumers' favor and higher purchase intention evaluation than the inconsistent canned beer packaging (i.e., straight line and Y/R and arc line and B/G). This paper discusses the influence of these results on the packaging design of canned beer and the possibility of improving the brand efficiency by meeting the visual elements of packaging design expected by consumers.

Energy and force transition between atoms and continuum in quasicontinuum method

  • Chang, Shu-Wei;Liao, Ying-Pao;Huang, Chang-Wei;Chen, Chuin-Shan
    • Interaction and multiscale mechanics
    • /
    • v.7 no.1
    • /
    • pp.543-561
    • /
    • 2014
  • We present a full energy and force formulation of the quasicontinuum method with non-local and local transition elements. Non-local transition elements are developed to transmit inhomogeneity from the atomistic to the continuum regions. Local transition elements are developed to resolve the mathematical mismatch between non-local atoms and the local continuum. The rationale behind these transition elements is provided by analyzing the energy and force transitions between atoms and continuum under the Cauchy-Born rule. We show that breakdown of the Cauchy-Born rule occurs for slaved atoms of local elements within the cutoff of non-local atoms. The inadequacy of the Cauchy-Born rule at the transition region naturally leads to the need of atomistic treatment of transition slaved and transition representative atoms. Such an atomistic treatment together with a full or cutoff sampling allows non-local transition elements containing these transition entities to transmit inhomogeneity. Different force formulations for transition representative atoms and pure local representative atoms allow the local transition elements to resolve non-local and local mismatches. The method presented herein is validated by force calculations in an unstressed perfect crystal as well as an unrelaxed grain boundary model. A nanoindentation simulation in 3D is conducted to demonstrate the accuracy and efficiency of the proposed method.

Numerical and experimental study of unsteady wind loads on panels of a radar aerial

  • Scarabino, Ana;Sainz, Mariano Garcia;Bacchi, Federico;Delnero, J. Sebastian;Canchero, Andres
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • This work experimentally and numerically analyzes the flow configurations and the dynamic wind loads on panels of rectangular L/h 5:1 cross section mounted on a structural frame of rectangular bars of L/h 0.5:1, corresponding to a radar structure. The fluid dynamic interaction between panels and frame wakes imposes dynamic loads on the panels, with particular frequencies and Strouhal numbers, different from those of isolated elements. The numerical scheme is validated by comparison with mean forces and velocity spectra of a panel wake obtained by wind tunnel tests. The flow configuration is analyzed through images of the numerical simulations. For a large number of panels, as in the radar array, their wakes couple in either phase or counter-phase configurations, changing the resultant forces on each panel. Instantaneous normal and tangential force coefficients are reported; their spectra show two distinct peaks, caused by the interaction of the wakes. Finally, a scaled model of a rectangular structure comprised of panels and frame elements is tested in the boundary layer wind tunnel in order to determine the influence of the velocity variation with height and the three-dimensionality of the bulk flow around the structure. Results show that the unsteady aerodynamic loads, being strongly influenced by the vortex shedding of the supporting elements and by the global 3-D geometry of the array, differ considerably on a panel in this array from loads acting on an isolated panel, not only in magnitude, but also in frequency.

Application of a fixed Eulerian mesh-based scheme based on the level set function generated by virtual nodes to large-deformation fluid-structure interaction

  • Hashimoto, Gaku;Ono, Kenji;Okuda, Hiroshi
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.287-318
    • /
    • 2012
  • We apply a partitioned-solution (iterative-staggered) coupling method based on a fixed Eulerian mesh with the level set function to a large-deformation fluid-structure interaction (FSI) problem where a large-deformable thin structure moves in a high-speed flow field, as an airbag does during deployment. This method combines advanced fluid and structure solvers-specifically, the constrained interpolation profile finite element method (CIP-FEM) for fluid Eulerian mesh and large-deformable structural elements for Lagrangian structural mesh. We express the large-deformable interface as a zero isosurface by the level set function, and introduce virtual nodes with level sets and structural normal velocities to generate the level set function according to the large-deformable interfacial geometry and enforce the kinematic condition at the interface. The virtual nodes are located in the direction normal to the structural mesh. It is confirmed that application of the method to unfolded airbag deployment simulation shows the adequacy of the method.

A study on the long-term behavior due to the hydraulic interaction between ground water and tunnel (지하수-터널 수리상호작용에 따른 터널의 장기거동 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Ahn, Sang-Ro;Park, Dong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.239-248
    • /
    • 2006
  • The interaction between ground water and structure is complicated behavior which cannot be easily investigated In the laboratory and monitored in the fields. In this study numerical simulation of the interactive behavior was performed using sophisticated coupled-finite element method. Hydraulic behavior of structure is modeled using solid elements with finite Permeability. Recovery of ground water table in the long-term is considered by controlling hydraulic boundary conditions. The results showed that the interaction effect is significant. Particularly non-symmetry in the lining permeability resulted in highly unbalanced pore water pressure which may cause detrimental effects on inner linings of tunnels acting as drains.

  • PDF

An analytical approach for offshore structures considering soil-structure interaction

  • Ali Sari;Kasim Korkmaz
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • This paper presents an advanced analytical approach for the design and analysis of fixed offshore structures with soil structure interaction considered. The proposed methodology involves conducting case studies to illustrate and assess the structural response of a structure considering seven different earthquakes, with the primary goal of ensuring there is no global collapse in the structures. The case studies focus on developing a model for structural analysis and its topside, incorporating nonlinear axial and lateral springs to capture soil-pile interaction. Additionally, mass and damping ratios are considered through the use of dashpots in the analyses. Finite Element Software was employed for structural analyses with detailed modeling, with soil spring nodes applied in the entire structure across various depths. After the finite element analysis was carried out, a sensitivity analysis was conducted to quantify and report the effects of different parameters.

The Machine-Part Group Formation for Minimizing the tool Exchange (공구 교체 횟수에서 최소로 하는 기계-부품그룹 형성)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.329-332
    • /
    • 1998
  • This Paper proposes a mathematical model to solve the cell formation problem with exceptional elements, Exceptional elements are bottleneck machines and exceptional parts that span two or more manufacturing cells. The model suggests whether it is cost-effective to eliminate an EE (by machine duplication or part subcontracting), or whether the intercellular transfer caused by the EE should remain in the cell formation. It provides an optimal solution for resolving the interaction created by EE in the initial cell formation solution. In addition, the model recognizes potentially advantageous mixed strategies ignored by previous approaches.

  • PDF