• Title/Summary/Keyword: interaction curve

Search Result 366, Processing Time 0.02 seconds

Determination of the Distribution of the Preisach Density Function With Optimization Algorithm

  • Hong Sun-Ki;Koh Chang Seop
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.258-261
    • /
    • 2005
  • The Preisach model needs a distribution function or Everett function to simulate the hysteresis phenomena. To obtain these functions, many experimental data obtained from the first order transition curves are usually required. In this paper, a simple procedure to determine the Preisach density function using the Gaussian distribution function and genetic algorithm is proposed. The Preisach density function for the interaction field axis is known to have Gaussian distribution. To determine the density and distribution, genetic algorithm is adopted to decide the Gaussian parameters. With this method, just basic data like the initial magnetization curve or saturation curves are enough to get the agreeable density function. The results are compared with experimental data and we got good agreements comparing the simulation results with the experiment ones.

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

A study on a design for a centrifugal pump impeller shape (원심펌프 회전차 형상 설계에 대한 연구)

  • 김진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.213-220
    • /
    • 1997
  • In this study, a design for a shape of centrifugal pump impeller has been performed using a p.c. under a Windows environment. Interaction between a user and a computer has been easily established using the Visual Basic. In determining an outer diameter of an impeller, steps are divided into two, a basic computational step and a refinment step. In this way user can enter his/her experience at the refinment step and hence can expect to lessen the nonlinear nature inherent to the design. In determining a shape of a side view of an impeller, the Bezier cubic curve has been used, and it can be seen that the Bezier cubic curves are well suited in the shape design under a Windows environment. By simply manipulating the four control points, one can generate various cubic curves among which one is selected. Also, a simple method, which can determine the curved position of an impeller vane, has been developed. These data can be used for final CAD drawings.

  • PDF

Local Buckling Characteristics of a column with I section (I형강기둥의 국부좌굴 특성)

  • 임종완;임장근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.18-26
    • /
    • 1994
  • The buckling characteristics of I - shaped columns which are composed of thin web and equal upper/lower flange plates are generally classified into the local and global modes. In this paper, its local buckling problem has been formulated on the basis of the assumed buckling modes using the finite element method for beams and plates. The effects of local bucklings are studied for various size rations and end conditions of I-shaped columns. The calculated results are comparatively well consistent with values obtained from the existing studies. The global buckling characteristics calculated by the present method are in good agreement with the classical rigid web solution

  • PDF

An approach to computerized preliminary design procedure of mid-size superyachts from hull modeling to interior space arrangement

  • Nam, Jong-Ho;Kim, Dong-Ham;Lee, Ho-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.96-103
    • /
    • 2010
  • A concept of preliminary design for mid-size superyachts is explored. First, the profile of a superyacht is interactively designed with the help of freeform curve functionality and graphical user interface (GUI) based interaction. The hull form is then constructed using major characteristic curves such as design waterline, deck sideline, and sections in addition to the predefined profile curve. After exterior hull modeling is done, the arrangement of significant interior spaces of all decks is carried out. A genetic algorithm is exploited to find a space arrangement by considering space fitness values, space proximity, and stairs connectivity of relevant spaces. A goal of the paper is to offer a step-by-step procedure for superyacht design from scratch or when initial information is not sufficient for complete design. For this purpose, a GUI based superyacht design system is developed. This design approach is expected to help users interactively design mid-size superyachts.

A study on the parameters to enhance derailment safety (탈선 안전성능 향상을 위한 매개변수에 관한 연구)

  • Hwang, Jeong-Taek;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.626-631
    • /
    • 2007
  • Technical requirements associated with derailment to ensure running safety of train are discussed. By using estimated derailment coefficient ratio, interaction of various parameters such as operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio are analyzed to enhance derailment safety. Sensitivity analysis in terms of pattern and passage speed of curve is performed by using rolling stock and track conditions associated with SMRT Line No. 5.

Nominal axial and flexural strengths of high-strength concrete columns

  • Al-Kamal, Mustafa Kamal
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.85-94
    • /
    • 2019
  • The ACI building code is allowing for higher strength reinforcement and concrete compressive strengths. The nominal strength of high-strength concrete columns is over predicted by the current ACI 318 rectangular stress block and is increasingly unconservative as higher strength materials are used. Calibration of a rectangular stress block to address this condition leads to increased computational complexity. A triangular stress block, derived from the general shape of the stress-strain curve for high-strength concrete, provides a superior solution. The nominal flexural and axial strengths of 150 high-strength concrete columns tests are calculated using the proposed stress distribution and compared with the predicted strength using various design codes and proposals of other researchers. The proposed triangular stress model provides similar level of accuracy and conservativeness and is easily incorporated into current codes.

Human Emotion Recognition based on Variance of Facial Features (얼굴 특징 변화에 따른 휴먼 감성 인식)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

Influences of Magnetization Reversal and Magnetic Interaction on Coercivity of Sr-Ferrite Particles with Different Sizes (크기가 다른 Sr-Ferrite 입자의 자화 역전과 자기 상호작용이 보자력에 미치는 영향)

  • Kim, Hyeon Soo;Jeong, Soon Young;Kim, Kyung Min;Kwon, Hae-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, the influences of magnetization reversal and magnetic interaction on the coercivity of Sr-ferrite particles with different sizes were investigated through various magnetic measurements. The shape of the initial magnetization curve and the magnetic field dependence of the coercive force indicate that the magnetization reversal changes from domain nucleation to wall pinning as the particle size decreases. On the other hand, the Henkel plot, interaction field factor and ${\Delta}M(H)$ obtained from the DCD and IRM curves show that the strength of the dipolar interaction is increased with increasing the particle size. Therefore, it can be concluded that coercivity is closely related to magnetic interaction as well as magnetization reversal mechanism.

RC Wall under Axial Force and Biaxial Bending Moments (축력과 면내 및 면외 휨모멘트를 받는 철근콘크리트 벽체)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.113-124
    • /
    • 1998
  • Numerical study using nonlinear finite element analysis is done for investigating behavior of isolated reinforced concrete walls subject to combined in-plane and out-of-plane bending moments and axial force. A method for estimating the ultimate strength of wall is developed, based on the analytical results. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. An existing unified method combining plasticity theory and damage model is used for material model of reinforced concrete. By numerical studies, the internal force distribution in the cross section is idealized, and a new method for estimating the ultimate strength of wall is developed. According to the proposed method, variation of the interaction curve of in-plane bending moment and axial force depends on the range of the permissible axial force per unit length that is determined by the given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, which indicates a decrease in the ultimate strength. The proposed method is compared with an existing method using the general assumption that strain shall be directly proportional to the distance from the neutral axis. Compared with the proposed method, the existing method overestimates the ultimate strength for walls subject to low out-of-plane bending moments, and it underestimates the ultimate strength for walls subject to high out-of-plane bending moments.