• Title/Summary/Keyword: interacting protein

Search Result 327, Processing Time 0.026 seconds

In-silico and structure-based assessment to evaluate pathogenicity of missense mutations associated with non-small cell lung cancer identified in the Eph-ephrin class of proteins

  • Shubhashish Chakraborty;Reshita Baruah;Neha Mishra;Ashok K Varma
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.30.1-30.13
    • /
    • 2023
  • Ephs belong to the largest family of receptor tyrosine kinase and are highly conserved both sequentially and structurally. The structural organization of Eph is similar to other receptor tyrosine kinases; constituting the extracellular ligand binding domain, a fibronectin domain followed by intracellular juxtamembrane kinase, and SAM domain. Eph binds to respective ephrin ligand, through the ligand binding domain and forms a tetrameric complex to activate the kinase domain. Eph-ephrin regulates many downstream pathways that lead to physiological events such as cell migration, proliferation, and growth. Therefore, considering the importance of Eph-ephrin class of protein in tumorigenesis, 7,620 clinically reported missense mutations belonging to the class of variables of unknown significance were retrieved from cBioPortal and evaluated for pathogenicity. Thirty-two mutations predicted to be pathogenic using SIFT, Polyphen-2, PROVEAN, SNPs&GO, PMut, iSTABLE, and PremPS in-silico tools were found located either in critical functional regions or encompassing interactions at the binding interface of Eph-ephrin. However, seven were reported in nonsmall cell lung cancer (NSCLC). Considering the relevance of receptor tyrosine kinases and Eph in NSCLC, these seven mutations were assessed for change in the folding pattern using molecular dynamic simulation. Structural alterations, stability, flexibility, compactness, and solvent-exposed area was observed in EphA3 Trp790Cys, EphA7 Leu749Phe, EphB1 Gly685Cys, EphB4 Val748Ala, and Ephrin A2 Trp112Cys. Hence, it can be concluded that the evaluated mutations have potential to alter the folding pattern and thus can be further validated by in-vitro, structural and in-vivo studies for clinical management.

Possible Implication for an Indirect Interaction between Basic Fibroblast Growth Factor and (Na,K)ATPase

  • Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.707-711
    • /
    • 1998
  • The (Na,K)ATPase is responsible for generating the ionic gradients and membrane potentials by the exchange of intracellular $Na^+$ for $K^+$. It has been recentl y shown that (Na,K)ATPase is involved in the exocytic pathway of basic fibroblast growth factor (bFGF), although it is not known that bFGF is secreted to the outside of cell through direct interaction with (Na,K) ATPase. To understand the role for (Na,K)ATPase in the secretary pathway of bFGF, we have sought to identify the cytoplasmic domains of the alpha1 isoform of (Na,K)ATPase interacting with bFGF by yeast two-hybrid system. We have also investigated the interaction between the alpha2 isoform of (Na,K)ATPase and bFGF to find out whether the interaction is isoform-specific. We found that none of the cytoplasmic domains of (Na,K)ATPase isoforms interacted with bFGF. The result suggests that the interaction between bFGF and (Na,K)ATPase might be indirect, thus requiring other proteins which are involved in the formation of protein complexes for the interaction, although we cannot exclude the possibility that the interaction requires the element of the whole alpha subunit structure that was not present in the isolated alpha subunit cytoplasmic domains.

  • PDF

EID-1 Interacts with Orphan Nuclear Receptor SF-1 and Represses Its Transactivation

  • Park, Yun-Yong;Park, Ki Cheol;Shong, Minho;Lee, Soon-Jung;Lee, Young-Ho;Choi, Hueng-Sik
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.372-377
    • /
    • 2007
  • The orphan nuclear receptor, SF-1, plays a pivotal role in the development and differentiation of the endocrine and reproductive systems, and also regulates the transcription of a host of genes, including those encoding several steroidogenic enzymes and gonadotropins. We found that a previously unidentified repressor, EID-1, is an SF-1-interacting protein that inhibits the transactivation of SF-1. A transient transfection assay revealed that EID-1 inhibits SF-1, but not LRH-1, $ERR{\gamma}$, or mCAR. Using the yeast two hybrid and GST pull-down assays, we determined that EID-1 interacted strongly with SF-1. In addition, it colocalized with SF-1 in mammalian cells and interacted specifically with the AF-2 domain of SF-1, competing with SRC-1 to inhibit SF-1 transactivation. EID-1 is expressed in the mouse testis, and its expression decreases during testis development. The results of the present study suggest that EID-1 can act as a repressor, regulating the function of SF-1.

The linker connecting the tandem ubiquitin binding domains of RAP80 is critical for lysine 63-linked polyubiquitin-dependent binding activity

  • Cho, Hyun-Jung;Lee, Sang-Ho;Kim, Hong-Tae
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.764-768
    • /
    • 2009
  • The tandem ubiquitin-interacting motif (UIM) domain located at the N-terminus of Receptor Associated Protein 80 (RAP80) plays a crucial role in ionizing radiation (IR)-induced DNA damage response. RAP80 translocates to sites of IR-induced DNA damage through interaction of its UIM domain with ubiquitinated H2A and Lys63-linked polyubiquitin chains. The exact mechanism, however, through which RAP80 associates with Lys63-linked polyubiquitin chains is not clear. Here, we show by in vitro GST-pull down assays that modifying the linker region between the tandem ubiquitin binding domains of RAP80 changes the binding affinity for Lys63-linked polyubiquitin chains and affects translocation to sites of DNA breaks. Based on these findings, we suggest that the length of the linker region between the tandem ubiquitin binding domains of RAP80 may be a key factor in the binding of RAP80 with Lys63-linked polyubiquitin chains as well as in the translocation of RAP80 to DNA break sites.

PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus

  • Kwon, Il-Sun;Lee, Kyung-Hoon;Choi, Joung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • Phosphatidylinositol (3,4,5)-triphosphate ($PIP_3$) is a lipid second messenger that employs a wide range of downstream effector proteins for the regulation of cellular processes, including cell survival, polarization and proliferation. One of the most well characterized cytoplasmic targets of $PIP_3$, serine/threonine protein kinase B (PKB)/Akt, promotes cell survival by directly interacting with nucleophosmin (NPM)/B23, the nuclear target of $PIP_3$. Here, we report that nuclear $PIP_3$ competes with Akt to preferentially bind B23 in the nucleoplasm. Mutation of Arg23 and Arg25 in the PH domain of Akt prevents binding to $PIP_3$, but does not disrupt the Akt/B23 interaction. However, treatment with phosphatases PTEN or SHIP abrogates the association between Akt and B23, indicating that nuclear $PIP_3$ regulates the Akt/B23 interaction by controlling the concentration and subcellular dynamics of these two proteins.

Cancer-Upregulated Gene 2 (CUG2), a New Component of Centromere Complex, Is Required for Kinetochore Function

  • Kim, Hyejin;Lee, Miae;Lee, Sunhee;Park, Byoungwoo;Koh, Wansoo;Lee, Dong Jun;Lim, Dae-Sik;Lee, Soojin
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.697-701
    • /
    • 2009
  • We previously identified cancer-upregulated gene 2 (CUG2) as a commonly up-regulated gene in various human cancer tissues, especially in ovary, liver, and lung (Lee et al., 2007a). CUG2 was determined to be a nuclear protein that exhibited high proto-oncogenic activities when overexpressed in NIH3T3 mouse fibroblast cells. To identify other cellular functions of CUG2, we performed yeast two-hybrid screening and identified CENP-T, a component of CENP-A nucleosome complex in the centromere, as an interacting partner of CUG2. Moreover, CENP-A, the principle centromeric determinant, was also found in complex with CENP-T/CUG2. Immunofluorescent staining revealed the co-localization of CUG2 with human centromeric markers. Inhibition of CUG2 expression drastically affected cell viability by inducing aberrant cell division. We propose that CUG2 is a new component of the human centromeric complex that is required for proper chromosome segregation during mitosis.

Regulatory Characteristics of the Vibrio vulnificus putAP Operon Encoding Proline Dehydrogenase and Proline Permease

  • Lee Jeong-Hyun;Jeong So-Young;Choi Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1285-1291
    • /
    • 2006
  • The proline utilization (put) operon of Vibrio vulnificus consists of the putAP genes encoding a proline dehydrogenase and proline permease. The result of put-lux transcriptional fusion analysis suggests that the V vulnificus putAP operon is not autoregulated by the PutA protein. A putR null mutation decreased proline dehydrogenase activity and the level of the put transcripts, indicating that transcription of putAP is under the positive control of PutR. The deduced amino acid sequence of the putR was similar to those reported from other bacteria with high levels of identity. Chromatin IP and GST pull-down assays revealed that PutR specifically binds to the putAP promoter region in vivo, and interacts with CRP in vitro. Taken together, the results suggested that PutR exerts its effect on putAP expression by directly interacting with CRP bound to the upstream region of P$_{put}$.

miR-9 Modulates Osteosarcoma Cell Growth by Targeting the GCIP Tumor Suppressor

  • Zhu, Shao-Wen;Li, Jian-Peng;Ma, Xin-Long;Ma, Jian-Xiong;Yang, Yang;Chen, Yang;Liu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4509-4513
    • /
    • 2015
  • Osteosarcoma is the most common primary bone tumor in humans, especially in childhood. However, the genetic etiology for its pathogenesis remains elusive. It is known that microRNAs (miRNAs) are involved in the development of tumor progression. Here we show that microRNA-9 (miR-9) is a potential oncogene upregulated in osteosarcoma cells. Knockdown of miR-9 in osteosarcoma resulted in suppressed colony formation and cell proliferation. Further study identified GCIP, a Grap2 and cyclin D interacting protein, as a direct target of miR-9. In addition, GCIP overexpression activated retinoblastoma 1 (Rb) and suppressed E2F transcriptional target expression in osteosarcoma cells. Moreover, GCIP depletion reversed miR-9 knockdown induced colony formation and cell proliferation suppression. In sum, these results highlight the importance of miR-9 as an oncogene in regulating the proliferation of osteosarcoma by directly targeting GCIP and may provide new insights into the pathogenesis of osteosarcoma.

A novel model of THO/TREX loading onto target RNAs in metazoan gene expression

  • Hur, Junho K.;Chung, Yun Doo
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.355-356
    • /
    • 2016
  • The THO/TREX complex consists of several conserved subunits and is required for mRNA export. In metazoans, THO/TREX binds a subset of mRNAs during RNA splicing, and facilitates their nuclear export. How THO/TREX selects RNA targets is, however, incompletely understood. In our recent study, we reported that THO is loaded onto Piwi-interacting RNA (piRNA) precursor transcripts independent of splicing, and facilitates convergent transcription in Drosophila ovary. The precursors are later processed into mature piRNAs, small noncoding RNAs that silence transposable elements (TEs). We observed that piRNAs originating from dual-strand clusters, where precursors are transcribed from both strands, were specifically affected by THO mutation. Analysis of THO-bound RNAs showed enrichment of dual-strand cluster transcripts. Interestingly, THO loading onto piRNA precursors was dependent on Cutoff (Cuff), which comprises the Rhino-Deadlock-Cutoff (RDC) complex that is recruited to dual-strand clusters by recognizing H3K9me3 and licenses convergent transcription from he cluster. We also found that THO mutation affected transcription from dual-strand clusters. Therefore, we concluded that THO/TREX is recruited to dual-strand piRNA clusters, independent of splicing events, via multi-protein interactions with chromatin structure. Then, it facilitates transcription likely by suppressing premature termination to ensure adequate expression of piRNA precursors.

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.