• Title/Summary/Keyword: inter-ring pressure

Search Result 15, Processing Time 0.021 seconds

A Study on Engine Oil Consumption (엔진 오일 소모에 관한 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.296-301
    • /
    • 2005
  • 피스톤-실린더-링 틈새를 통해 일어나는 오일소모와 브로바이가스 증가는 최소화되어야 하며, 한편으로는 연료저감 및 성능증가 개선 측면에서 피스톤 링 팩의 마찰 손실도 줄일 필요가 있다. 이러한 두 가지 측면에서, 피스톤 링 팩의 최적 설계에 대한 연구가 수행되어야 한다. 따라서 오일소모 및 브로바이가스의 앙은 엔진개발과정 및 필드에서의 엔진운전 중에 엔진의 상태가 좋은지 나쁜지를 판단하는 중요한 요인이 된다. 본 연구의 목적은 연소실 내로의 오일 흐름 량과 피스톤 링 팩을 지나 아래로 내려가는 가스흐름을 계산하여 엔진오일 소모 및 브로바이가스를 예측하는 컴퓨터 프로그램을 개발하는 것이다. 향 후 본 프로그램을 이용하여 엔진의 상태를 미리 예측할 수 있을 것으로 본다.

A Study on Engine Durability Considering Oil Consumption and Wear of Piston-Ring Pack and Cylinder Bore (피스톤 링 팩 및 실린더 보아 마모와 오일소모를 고려한 엔진 내구수명 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.155-163
    • /
    • 2006
  • Ring, groove and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face, groove geometry and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blowby and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings, grooves and cylinder bore are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below.

A Study on Ring Face and Groove Wear during Engine Durability Test (엔진 내구시험 시 링 외주면 및 그루브 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2006
  • Ring and groove wear may not be a problem in most current automotive engines. However, a small change in ring face and groove geometry can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings and grooves are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be at the lower bound of aver-aged test values or a little below.

Inter Propellant Seal Performance test for 75 ton Class Turbopump (75톤급 터보펌프 추진제 혼합 방지 실의 성능 시험)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Park, Min-Joo;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.57-64
    • /
    • 2010
  • A performance test of inter propellant seal for a 75 ton class turbopump is conducted using water to evaluate leakage and endurance performance. Each part of fuel pump side and oxidizer pump side for a prototype inter propellant seal has been tested for verifying endurance performance during total accumulated test time 2,100 sec in water. The fuel pump side part with one-stage seal of carbon floating ring shows average leakage rate 13.7 gram/sec under average seal differential pressure 9.4 bar. On the other hand, the oxidizer pump side part with two-stage seal assembly of carbon floating rings shows average leakage rate 7.3 gram/sec under average seal differential pressure 9.5 bar. After the endurance performance test, the inter propellant seal shows good physical condition. A leakage performance test of the inter propellant seal for cryogenic environment will be performed using LN2 in the near future.

A Study on Cylinder Bore Wear during Engine Durability Test (엔진 내구시험 시 실린더 보아의 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.131-136
    • /
    • 2006
  • Cylinder bore wear may not be a problem in most current automotive engines. However, a small change in cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each pare0s wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of cylinder bore diameter are obtained from three engines before and after engine durability test. The calculated wear data of cylinder bore diameter are turn out to be twice of the lower bound of averaged test values at TDC and the lower bound at BDC.