• Title/Summary/Keyword: intensity of typhoon

Search Result 138, Processing Time 0.027 seconds

Integration of GIS with USLE in Assessment of Soil Erosion due to Typoon Rusa (태풍 루사에 의한 토양 침식량 산정을 위한 GIS와 범용토양손실공식(USLE) 연계)

  • Hahm, Chang-Hahk;Kim, Byung-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.77-85
    • /
    • 2007
  • Assessment of soil erosion is a cost and time-consuming task. There are many models developed to predict soil erosion from an area, but Universal Soil Loss Equation (USLE) is most widely used empirical equation for estimating annual soil erosion. Soil erosion depends upon-rainfall intensity, type of soil, land cover and land use, slope degree, slope length and soil conservation practice. All these parameters are have spatial distribution and hence satellite remote sensing and Geographic Information System (GIS) are applicable in the assessment of the influence on soil erosion. GIS has been integrated with the USLE (Universal Soil Loss Equation) model in identification of rainfall-based erosion to the Bocheong River which is the representative basin of IHP due to Typhoon Rusa. Similar studies are available in literature, ranging from those that use a simple model such as USLE to others of a more sophisticated nature.

  • PDF

Analysis of Rainfall Spatial Correlation Structure Using Minutely Data (분단위 자료를 이용한 강우의 공간상관구조 분석)

  • Yoo, Chul-Sang;Park, Chang-Yeol;Kim, Kyoung-Jun;Jun, Kyung-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.113-120
    • /
    • 2008
  • This study analyzed the spatial correlograms of minutely rainfall data with respect to various accumulation times. A bivariate mixed lognormal distribution was applied for rainfall modelling. A total of 26 minutely rainfall data sets from rain gauge stations in the central part of Korean peninsula were analyzed, also repeated for several storm types like Jang-Ma, typhoon and convective storms for their comparison. The accumulation times 1, 2, 3, 5, 10, 30 and 60 minutes were considered in this study. As results, it was found that the minutely rainfall data available was not good enough for estimating minutely rainfall intensity at ungaged locations. It seems more practical to use the hourly rainfall data with much higher rain gauge density, if proper methods for interpolation and data dis-aggregation are provided.

Inundating Disaster Assessment in Coastal Areas Using Urban Flood Model (도시홍수모델을 이용한 해안지역의 침수재해평가)

  • Yoo Hwan-Hee;Kim Weon-Seok;Kim Seong-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2006
  • In recent years, a large natural disasters have occurred due to worldwide abnormal weather and the amount of damage has been increased more resulting from high density population and a large-sized buildings of the urbanized area. In this study. we estimate the flooded area according to rainfall probability intensify and sea level in Woreong dong, Masan occurred flood damages by typhoon Maemi using SWMM, a dynamic rainfall-runoff simulation model in urban area, and then analyze the damage of flood expected area through connecting with GIS database. In result, we can predict accurately expected area of inundation according to the rainfall intensity and sea level rise through dividing the study area into sub-area and estimating a flooded area and height using SWMM. We provide also the shelter information available for urban planning and flood risk estimation by landuse in expected flood area. Further research for hazard management system construction linked with web or wireless communication technology expects to increase its application.

A Study on Environmental Damage due to Typhoons in Downstream Area of Abandoned Mine (태풍으로 인한 폐광산 하류 지역에서 환경피해 연구)

  • Cho, SungHyen;Lee, Dongguen;Lee, Goontaek;Kwon, Ohkyung;Kim, Tae Seung
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.119-127
    • /
    • 2022
  • In recent years, the intensity of typhoons has increased due to climate change. It is presumed that the tailings and waste rock in the mining area harm the environment owing to flood damage. The Gangneung area has been affected by the largest typhoons in Korea, including No. 3,693 (1936), Rusa (2002), Maemi (2003), and Megi (2004). This study was based on a case in which high concentrations of arsenic were detected in the surroundings along a stream after floods caused by typhoons. Although the environmental damage-related law clarifies the responsibility of polluters, careful implementation is required in potential natural disaster areas. The pollutants from abandoned mines can be widely exposed due to typhoons as artificial causes may be mixed. To minimize the impact of natural disasters in these areas, it is necessary to improve and link relevant laws. This study is expected to help cope with mixed pollutants in downstream areas.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

A Possible Relation of Pacific Decadal Oscillation with Weakened Tropical Cyclone Activity over South Korea (한국에 영향을 미치는 약해진 열대저기압 활동과 태평양 10년 주기 진동과의 관계)

  • Chang, Minhee;Park, Doo-Sun R.;Kim, Dasol;Park, Tae-Won
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Although tropical cyclones with wind speeds weaker than 17 ms-1 (weak tropical cyclones: WTCs) can cause significant damage, particularly over the Seoul metropolitan area, only a few studies have focused on WTC activity over South Korea. In this study, we found that WTC activity is likely associated with the Pacific Decadal Oscillation (PDO). During the negative phases of the PDO, landfall frequency of WTCs increased significantly compared to the positive phases at 95% confidence level. When related to the negative phases of the PDO, a positive relative vorticity anomaly is found in the northern sector of the western North Pacific while a negative relative vorticity anomaly and enhanced vertical wind shear prevail in the southern sector of the WNP. These factors are favorable for the northward shift of the genesis location of tropical cyclones on average, thereby reducing the total lifetime of WTCs. Moreover, a high-pressure anomaly over the Japanese islands would shift a tropical cyclone track westward in addition to the landfall location. Consequently, the effects of the topographical friction and the Yellow Sea Bottom Cold Water on a tropical cyclone may increase. These conditions could result in a weaker lifetime maximum intensity and landfall intensity, ultimately resulting in WTCs becoming more frequent over South Korea during the negative phases of the PDO.

Objectification and validation of typhoon center intensity analysis based on MTSAT-1R satellite's infrared images (MTSAT-1R 위성 적외영상기반 태풍강도분석 객관화와 검증)

  • Park, Jeong-Hyun;Park, Jong-Seo;Kim, Baek-Min;Lee, Hee-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.219-223
    • /
    • 2007
  • GMS(Geostational Meteorological Satellite), GOES(Geostationary Operational Environmental Satellite), MTSAT(Multi-Funcional Transport Satellite) 등의 정지기상위성은 거의 매시간 기상상황을 감시하고 태풍정보를 실시간 분석할 수 있어 드보락(Dvorak, 1975)등에 의해 이를 이용한 가시영상이나 적외영상기반의 태풍중심강도를 분석기법(드보락의 VIS/IR 분석법) 및 적외강조영상 분석기법(드보락의 EIR 분석법)이 개발되었다(Dvorak,1975, 1984). 그러나 주관적인 드보락의 VIS/IR 분석 법 및 EIR 분석법에 의한 결과는 분석자마다 다를 수 있고,절차 또한 복잡하여 시급성을 요하는 태풍 분석에서 취약점으로 지적되어 왔다. 이러한 주관적 방법의 한계를 극복하기 위하여 디지럴화된 영상과 자동 객관화된 알고리즘을 적용하는 객관 드보락 기법 (Advanced Objective Dvorak Technique, 이하 AODT)이 개발되었고(Velden et al, 1998), Zehr(1989)에 의해 비행기 관측자료등을 통해 보정되고 있다. 기상청에서는 2001 년부터 GMS 위성 관측영상을 이용하여 태풍의 중심위치를 분석하고,태풍강도를 정량화하기 위해 주관 드보락 기법 (Subjective Dvorak Technique 이하 SDT)을 이용하여 태풍중심위치와 강도정보를 실시간 예보관 및 일반인에게 제공하고 있다. 그러나 주관적인 드보락 기법이 분석자에 따라 다른 결과가 도출 될 수 있어, 이를 보완하기 위해 QuikSCAT 해상풍 관측자료, 정지 및 극 궤도위성자료를 활용한 해수면온도 둥 위성 분석자료와 기타 관측자료를 참조하고 있다. 정지기상위성자료를 이용한 드보락기법은 적외영상만으로 태풍중심 위치와 강도를 분석할 수 있는 장점 외에 앞에서 열거한 몇 가지 극복되지 못한 한계도 있으나,SSM/I 둥 기타 위성자료의 관측시간대와 분석정보 부족 등으로 정지기상위성자료를 이용한 드보락 기법을 대체할만한 현업용 분석기법이 개발되지 못했다. 기상청에서는 기존의 태풍분석업무를 개선하기 위해서 2005년부터 AODT를 도입하여 그 성능을 시험분석하고, 2006년 6월부터 AODT를 현업화하여 실시간 태풍강도분석 에 활용하였으며 2006년 제 3호 태풍 에위니아(EWINIAR)부터 두리안(DURlAN)까지 19개 태풍 434개 시간대자료를 분석한 결과 SDT 강도분석결과와 0.90의 상관도를 보였다. 또한 AODT 알고리즘이 기본적으로 대서양에서 발생하는 태풍에 초점을 두고 개발되어 북서태평양에서 발생하는 태풍에 직접 적용하기에는 어려움이 있는 것으로 알려져 있으므로(Velden et al. 1998), 이의 개선을 위하여 태풍강도지수인 SDT CI(Current Intensity) 수와 AODT CI 수간의 통계적 관계를 밝히고 신경망을 이용한 비선형 주성분 분석 (Hieh,2004)등을 통해 AODT CI 수 보정 시도를 하였다. 이와 더불어, 기상청은 근원적 객관 알고리즘 개선을 위해 AODT 자체 알고리즘 분석과 위성자료 DB 구축 동의 노력을 기울이고 있다.

  • PDF

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Spatio-Temporal Patterns of Extreme Precipitation Events by Typhoons Across the Republic of Korea (태풍 내습 시 남한의 극한강수현상의 시.공간적 패턴)

  • Lee, Seung-Wook;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.3
    • /
    • pp.384-400
    • /
    • 2013
  • In this study, spatio-temporal patterns of extreme precipitation events caused by typhoons are examined based on observational daily precipitation data at approximately 340 weather stations of Korea Meterological Administration's ASOS (Automated Synoptic Observation System) and AWS (Automatic Weather System) networks for the recent 10 year period (2002~2011). Generally, extreme precipitation events by typhoons exceeding 80mm of daily precipitation commonly appear in Jeju Island, Gyeongsangnam-do, and the eastern coastal regions of the Korean Peninsula. However, the frequency, intensity and spatial extent of typhoon-driven extreme precipitation events can be modified depending on the topography of major mountain ridges as well as the pathway of and proximity to typhoons accompanying the anti-clockwise circulation of low-level moisture with hundreds of kilometers of radius. Yellow Sea-passing type of typhoons in July cause more frequent extreme precipitation events in the northern region of Gyeonggi-do, while East Sea-passing type or southern-region-landfall type of typhoons in August-early September do in the interior regions of Gyeongsangnam-do. These results suggest that when local governments develop optimal mitigation strategies against potential damages by typhoons, the pathway of and proximity to typhoons are key factors.

  • PDF

A Study on the Field Application of Nays2D Model for Evaluation of Riverfront Facility Flood Risk (친수시설 홍수위험도 평가를 위한 Nays2D 모형의 현장 적용에 관한 연구)

  • Ku, Young Hun;Song, Chang Geun;Park, Yong-Sung;Kim, Young Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.579-588
    • /
    • 2015
  • Recent climage changes have resulted in increases in rainfall intensity and flood frequency as well as the risk of flood damage due to typhoons during the summer season. Water-friendly facilities such as ecological parks and sports facilities have been established on floodplains of rivers since the river improvement project was implemented and increases in the flood levels of rivers due to typhoons can lead to direct flood damage to such facilities. To analyze the hydraulic influence of these water-friendly facilities on floodplains or to evaluate their stability, numerical analysis should be performed in advance. In addition, it is crucial to address the drying and wetting processes generated by water level fluctuations. This study uses a Nays2D model, which analyzes drying and wetting, to examine its applicability to simple terrain in which such fluctuations occur and to natural rivers in which drying occurs. The results of applying this model to sites of actual typhoon events are compared with values measured at water level observatories. Through this comparison, it is determined that values of coefficient of determination ($R^2$), mean absolute error (MAE), and root-mean-square error (RMSE) are 0.988, 0.208, and 0.239, respectively, thus showing a statistically high correlation. In addition, the results are used to calculate flood risk indices for evaluation of such risk for water-friendly facilities constructed on floodplains.