DOI QR코드

DOI QR Code

A Study on the Field Application of Nays2D Model for Evaluation of Riverfront Facility Flood Risk

친수시설 홍수위험도 평가를 위한 Nays2D 모형의 현장 적용에 관한 연구

  • 구영훈 (인제대학교 환경공학과) ;
  • 송창근 (인천대학교 안전공학과) ;
  • 박용성 (영국 던디대학교 토목공학과) ;
  • 김영도 (인제대학교 환경공학과)
  • Received : 2015.03.02
  • Accepted : 2015.04.27
  • Published : 2015.06.01

Abstract

Recent climage changes have resulted in increases in rainfall intensity and flood frequency as well as the risk of flood damage due to typhoons during the summer season. Water-friendly facilities such as ecological parks and sports facilities have been established on floodplains of rivers since the river improvement project was implemented and increases in the flood levels of rivers due to typhoons can lead to direct flood damage to such facilities. To analyze the hydraulic influence of these water-friendly facilities on floodplains or to evaluate their stability, numerical analysis should be performed in advance. In addition, it is crucial to address the drying and wetting processes generated by water level fluctuations. This study uses a Nays2D model, which analyzes drying and wetting, to examine its applicability to simple terrain in which such fluctuations occur and to natural rivers in which drying occurs. The results of applying this model to sites of actual typhoon events are compared with values measured at water level observatories. Through this comparison, it is determined that values of coefficient of determination ($R^2$), mean absolute error (MAE), and root-mean-square error (RMSE) are 0.988, 0.208, and 0.239, respectively, thus showing a statistically high correlation. In addition, the results are used to calculate flood risk indices for evaluation of such risk for water-friendly facilities constructed on floodplains.

최근 기후변화로 인해 강우강도와 홍수 발생빈도가 증가하고 있으며 여름철 태풍으로 인한 침수피해의 가능성이 높아지고 있다. 대하천 사업 이후 하천의 홍수터를 활용하여 생태공원이나 체육시설 등과 같은 다양한 친수시설들이 조성되었으나 태풍으로 인한 하천의 홍수위 상승은 이와 같은 친수시설들에 대한 직접적인 침수피해를 야기할 수 있다. 이러한 홍수터 친수시설에 대한 수리학적 영향 분석이나 안정성 평가를 위해서는 수치해석이 선행되어야 하며, 수위의 상승 및 하강에 의해 발생하는 마름/젖음 현상에 대한 처리가 매우 중요하다. 본 연구에서는 마름/젖음 해석이 가능한 Nays2D 모형을 이용하여 마름/젖음이 발생하는 단순 지형에 대한 적용성을 분석하고, 마름이 발생하는 자연하천에 적용하였다. 실제 태풍 사상에 대한 모형의 현장 적용결과를 수위관측소에서 실측된 실측수위와 비교했으며, 그 결과 $R^2$, AME, RMSE 값이 각각 0.988, 0.208, 0.239로 통계적으로 높은 상관관계를 보였다. 또한, 모형의 결과를 이용하여 홍수위험도 지수를 산정하였으며, 연구결과를 통해 홍수터 친수시설 홍수위험도 평가를 실시하였다.

Keywords

References

  1. Akanbi, A. A. and Katopodes, N. D. (1988). "Model for flood propagation on initially dry land." Journal of Hydraulics Engineering, ASCE, Vol. 16, pp. 489-505.
  2. Bates, P. D. and Hervouet, J. M. (1999). "A new method for moving boundary hydrodynamic problems in shallow water." Proceeding. R. Soc. London, Ser. A, 445, pp. 3107-3128.
  3. Beffa, C. (1998). "Two-dimensional modelling of flood hazards in urban areas." Proc. 3 rd Int. Conf. on Hydroscience and Engineering, D-Cottbus.
  4. Cooley, R. L. and Moin, S. A. (1976). "Finite element solution of saint-venant equations." J. of Hydr. Div., ASCE, Vol. 102, No. HY6, pp. 759-775.
  5. Cornel, Beffa (1998). "Two-dimensional modelling of flood hazards in urban areas." International Conference on Hydrocscience & Engineering, ICHE, Parallel Session(parallel 15), Cottbus.
  6. Han, K. Y., Baek, C. Y. and Park, K. O. (2004). "Finite element analysis of river flow using SU/PG scheme -I. Theory and Stability Analysis -." Korea Society of Civil Engineers, KSCE, Vol. 24, No. 3B, pp. 183-192 (in Korean).
  7. Han, K. Y., Kim, D. G., Lee, E. R. and Choi, H. S. (2001). "Two dimensional hydrodynamic analysis in a river using numerical model and geographic information system." Korea Society of Civil Engineers, KSCE, Vol. 21, No. 1-D, pp. 97-103 (in Korean).
  8. Heniche, M., Secretan, Y., Boudreau, P. and Leclerc, M. (2000). "A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries." Advances in Water Resources, Vol. 23, pp. 359-372. https://doi.org/10.1016/S0309-1708(99)00031-7
  9. HR Wallingford, Flood Hazard Research Centre and Risk and Policy Analysts Ltd (2006). Flood Risk to people. Phase 2. FD2321/TR2. Guidance document. Defra/Environment Agency Flood and Coastal Defence R&D Programme.
  10. Jameson, A., Schmit, W. and Turkel, E. (1981). "Numerical solutions of the euler equations by finite volume methods using Runge-Kutta Time-stepping schemes." AIAA 14th Fluid And Plasma Dynamics Conference, Palo Alto, Calif., AIAA-81-1259.
  11. Kim, S. H., Choi, S. Y., Oh, H. W. and Han, K. Y. (2009). "Development of grid reconstruction method to simulate drying/wetting in natural rivers (I): Model Development and Verification." Korea Water Resources Association, KWRA, Vol. 42, No. 11, pp. 973-988 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.11.973
  12. Ku, Y. H., Song, C. G., Kim, Y. D. and Seo, I. W. (2013). "Analysis of hydraulic characteristics of flood plain using two-dimensional unsteady model." J. of Korean Society of Civil Engineers, KSCE, Vol. 33, No. 3, pp. 997-1005 (in Korean). https://doi.org/10.12652/Ksce.2013.33.3.997
  13. Leclerc, M., Bellemare, J., Dumas, G. and Dhatt, G. (1990). "A finite element model of estuarian and river flows with moving boundaries." Advanced in Water Resources, Vol. 13, No. 4, pp. 158-168. https://doi.org/10.1016/0309-1708(90)90039-7
  14. Medeiros, S. C. and Hagen, S. C. (2012). "Review of wetting and drying algorithms for numerical tidal flow models." International Journal for Numerical Methods in Fluids, In Press.
  15. Sato, S., Imamura, F. and Shuto, N. (1989). "Nunerical simulation of flooding and damage to houses by the Yoshida River due to Typhoon No. 8610." J. Natura Disaster Science, Vol. 11, No. 2, pp. 1-19.
  16. Shi, Y., Ray, R. K. and Nguyen, K. D. (2013). "A projection methodbased model with the exact C-property for shal-low-water flows over dry and irregular bottom using unstructured fin-ite-volume technique." Computers & Fluids, Vol. 76, pp. 178-195. https://doi.org/10.1016/j.compfluid.2013.02.002
  17. Shimizu, Y., Inoue, T., Hamaki, M. and Iwasaki, T. (2012) iRIC software - Nays2D solver manual.
  18. Yabe, T. and Ishikawa, T. (1990). "A numeri-cal cubic-interpolated pseudoparticle (CIP) method without time splitting technique for hyperbolic equation." Jour. of PSJ, Vol. 59, No. 7, pp. 2301-2304.

Cited by

  1. Analysis on the sediment sluicing efficiency by variation of operation water surface elevation at flood season vol.49, pp.12, 2016, https://doi.org/10.3741/JKWRA.2016.49.12.971
  2. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach vol.283, 2017, https://doi.org/10.1016/j.geomorph.2017.01.017