• Title/Summary/Keyword: intelligent sliding mode control

Search Result 95, Processing Time 0.02 seconds

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

Vibration Control of Intelligent Structures via ER Fluids and Piezoelectric Film Actuators (전기유동유체와 압전필름 액튜에이터를 이용한 지능구조물의 진동제어)

  • 박용군;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.249-253
    • /
    • 1995
  • 본 연구에서는 잠재적 응용성이 큰 ER유체와 압전필름을 액튜에이터로 하는 하이브리드형 지능구조물을 제안한 후 능동 진동제어를 실시하였다. 먼저 중공(hollow)의 샌드위치 형태 복합재료(glass/epoxy)보에 ER유체와 압전필름을 각각 삽입과 접착을 하여 하이브리드형 지능구조물을 제작하였다. 그리고 각 매체의 액튜에이팅 특성을 고려하여, ER유체 액튜에이터(ERFA)는 전장부하 함수로 도출되는 구조물의 주파수응답을 특징으로 하였고, 압전필름 액튜에이터(PFA)는 신경 슬라이딩 모드 제어기 (neuro sliding mode controller : NSC)를 적용하였다. 이 두 액튜에이터가 동시에 작동하는 능동 진동제어계를 실험적으로 구현한 후 과도응답과 강제 응답에 대한 진동제어 성능을 단일 액튜에이터 작동시와 비교 고찰하여 제시된 하이브리드 액튜에이팅의 효과를 입증하였다.

  • PDF

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.640-647
    • /
    • 2007
  • This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.