• Title/Summary/Keyword: intelligent diagnosis

Search Result 393, Processing Time 0.03 seconds

Fault detection and identification for a robot used in intelligent manufacturing (IMS용 로봇에서의 FDI기법 연구)

  • 이상길;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1489-1492
    • /
    • 1997
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square distribution is applied fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Design of Self-Validation Sensor Using Noise (노이즈를 이용한 자기진단센서 설계)

  • 김이곤;하종필
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.153-157
    • /
    • 2002
  • 자기 진단 센서는 자신의 상태를 스스로 진단하는 기능을 갖는 센서를 말한다. 이러한 기능을 갖기 위해서 자신의 상태를 판단 할 수 있는 정보를 얻는 것이 가장 중요하다. 본 연구에서는 자신의 노이즈 신호만으로 상태를 판단할 수 있는 자기 진단센서의 설계하는 방법을 제안하였다. 웨이브렛 및 ICA 분석기법을 이용하여 자신의 출력 신호로부터 대상목표의 측정물리량을 나타내는 신호성분을 제외한, 센서 자신으로부터 발생하는 특징 노이즈 신호만을 분류한 다음에, 이 신호를 PDS로 정량화하여 특징 데이터를 생성하였다. 실험을 통해 그 타당성을 입증하였다.

  • PDF

A Study on the Failure Diagnosis of Induction Motor using Neyral Networks (신경회로망을 이용한 유도전동기의 결함진단에 관한 연구)

  • 양보석;김남설
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.56-66
    • /
    • 1995
  • 본 논문에서는 산업용으로서 널리 이용되고 있는 3상 유도전동기의 전기적 결함에 의해 발생하는 전자진동문제을 체계적으로 검토하고, 이들 진동신호의 주파수스펙트럼을 사용한 전동기의 결함진단 시스템을 신경회로망을 이용하여 구축하였다. 그리고 그 중에서 비교적 자주 발생하는 공극(air-gap)의 정적 편심에 대해 실험을 수행하고, 그 결과를 신경회로망을 이용한 진단법에 적용하여 본 진단법의 유용성을 확인하였다. 또한 현장에서 발생된 전기적인 결함에 대한 진동측정 data를 이용하여 진단이 정상적으로 수행되는가를 조사하여 각 결함을 정확하게 판별할 수 있음을 입증하였다.

  • PDF

Automatic Detection of Interstitial Lung Disease using Neural Network

  • Kouda, Takaharu;Kondo, Hiroshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • Automatic detection of interstitial lung disease using Neural Network is presented. The rounded opacities in the pneumoconiosis X-ray photo are picked up quickly by a back propagation (BP) neural network with several typical training patterns. The training patterns from 0.6 mm ${\O}$ to 4.0 mm ${\O}$ are made by simple circles. The total evaluation is done from the size and figure categorization. Mary simulation examples show that the proposed method gives much reliable result than traditional ones.

Fault Detection and Identification for a Robot used in Intelligent Manufacturing (IMS용 로봇의 고장진단기법에 관한 연구)

  • 이상길;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.666-673
    • /
    • 1998
  • To increase reliability and performance of an IMS(Intelligent Manufacturing System), fault tolerant control based on an accurate fault diagnosis is needed. In this paper, robot FDI(fault detection and identification) is proposed for IMS where the robot is controlled with state estimates of a nonlinear filter using a mathematical robot model. The Chi-square test and GLR(General likelihood ratio) test are applied for fault detection and fault size is estimated by a proposed bias filter. Performance of the proposed algorithm is tested by simulation for studies.

  • PDF

Model-based Design for Autonomous Defense Systmes (자치적 방어 시스템을 위한 모델베이스기반 설계)

  • 이종근
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.89-99
    • /
    • 1999
  • The major objective of this research is to propose a design architecture for autonomous defense systems for supporting highly intelligent behavior by combining decision, perception, and action components. Systems with such high levels of autonomy are critical for advanced battlefield missions. By integrating a plenty of advanced modeling concepts such as system entity structure, endomorphic modeling, engine-based modeling, and hierarchical encapsulation & abstraction principle, we have proposed four layered design methodology for autonomous defense systems that can support an intelligent behavior under the complicated and unstable warfare. Proposed methodology has been successfully applied to a design of autonomous tank systems capable of supporting the autonomous planning, sensing, control, and diagnosis.

  • PDF

Intelligent Nuclear Material Diagnosis System Using SOM-PAK (SOM-PAK을 이용한 지능형 핵물질 거동진단 시스템)

  • 송대용;이상윤;하장호;고원일;김호동
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.135-144
    • /
    • 2003
  • In this paper, the implementation techniques of intelligent nuclear material surveillance system based on the SOM(Self Organized Mapping) was described. Unattended continuous surveillance systems for nuclear facility result in large amounts of data, which require much time and effort to inspect. Therefore, it is necessary to develop system that automatically pinpoints and diagnoses the anomalies from data. In this regards, this paper presents a novel concept of a continuous surveillance system that integrates visual image and radiation data by the use of neural networks based on self-organized feature mapping

  • PDF

FUZZY METHOD FOR FINDING THE FAULT PROPAGATION WAY IN INDUSTRIAL SYSTEMS

  • Vachkov, Gancho;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1114-1117
    • /
    • 1993
  • The paper presents an effective method for finding the propagation structure of the real origin of a system malfunction. It uses a combined system model consisting of Structural Model (SM) in the form of Fuzzy Directed Graph and Behavior Model (BM) as a set of Fuzzy Relational Equations $A\;{\circ}\;R\;=\;B$. Here a specially proposed fuzzy inference technique is checked and investigated. Finally a test example for fault diagnosis of an industrial system is given and analyzed.

  • PDF

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

An Integrated On-Line Diagnostic System for the NORS Process of Maiden Reactor Project: The Design Concept and Lessons Learned

  • Kim, Inn-Seock
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2000
  • During an extensive review made as part of the Integrated Diagnosis System project of the Maiden Reactor Project, MOAS (Maryland Operator Advisory System) was identified as one of the most thorough systems developed thus far. MOAS is an integrated on-line diagnosis system that encompasses diverse functional aspects that are required for an effective process disturbance management: (1) intelligent process monitoring and alarming, (2) on-line sensor data validation and sensor failure diagnosis, (3) on-line hardware (besides sensors) failure diagnosis, and (4) real-time corrective measure synthesis. The MOAS methodology was used at the Maiden Man-Machine Laboratory HAMMLAB of the OECD Maiden Reactor Project. The performance of MOAS, developed in G2 real-time expert system shell for the high-pressure preheaters of the NORS process in the HAMMLAB, was tested against a variety of transient scenarios, including failures of the control valves and sensors, and tube leakage of the preheaters. These tests showed that MOAS successfully carried out its intended functions, i.e., quickly recognizing an occurring disturbance, correctly diagnosing its cause, and presenting advice on its control to the operator. The lessons learned and insights gained during the implementation and performance tests also are discussed.

  • PDF