• 제목/요약/키워드: intelligence transportation systems

검색결과 77건 처리시간 0.026초

정보 서비스 장치 테스트를 위한 메시지 프레임 자동 생성 기법 (The Auto Generation Scheme of Message Frame for Testing of the Information Service Devices)

  • 김정숙;김재형;정준호;정은미
    • 한국지능시스템학회논문지
    • /
    • 제24권4호
    • /
    • pp.418-423
    • /
    • 2014
  • 지능형교통체계(Intelligent Transportation Systems, ITS)는 첨단 교통체계의 구성요소, 통신, 컴퓨터 및 제어 기술을 활용하여 실시간으로 교통정보를 수집하고 가공하여 교통 이용자에게 제공함으로써 교통체계의 지능성, 안전성과 효율성을 추구하는 것을 말한다. 그러나 지능형교통체계는 도시의 경관과 어울리게 구성하고자 하는 각 도시들의 환경 정책에 따라 시스템의 크기와 모양이 다양하며, 따라서 실시간으로 제공되는 정보나 데이터가 각 시스템마다 다 다르다. 이에 정보 서비스 제공을 위한 디바이스를 제조하는 업체들은 요구가 발생되는 정보 서비스에 따라 매번 다른 메시지 프레임을 갖는 시스템을 제작해야 한다. 이러한 작업은 많은 시간과 인력이 낭비된다. 이에 본 논문에서는 다양한 메시지 프레임을 쉽게 설정하여 디스플레이 장치들을 현지에 직접 방문하지 않고, 테스트하기 위한 메시지 프레임을 자동으로 생성하는 기법을 제안하고 윈도우즈 환경에서 시스템을 개발하였다.

Analysis of V2V Broadcast Performance Limit for WAVE Communication Systems Using Two-Ray Path Loss Model

  • Song, Yoo-Seung;Choi, Hyun-Kyun
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.213-221
    • /
    • 2017
  • The advent of wireless access in vehicular environments (WAVE) technology has improved the intelligence of transportation systems and enabled generic traffic problems to be solved automatically. Based on the IEEE 802.11p standard for vehicle-to-anything (V2X) communications, WAVE provides wireless links with latencies less than 100 ms to vehicles operating at speeds up to 200 km/h. To date, most research has been based on field test results. In contrast, this paper presents a numerical analysis of the V2X broadcast throughput limit using a path loss model. First, the maximum throughput and minimum delay limit were obtained from the MAC frame format of IEEE 802.11p. Second, the packet error probability was derived for additive white Gaussian noise and fading channel conditions. Finally, the maximum throughput limit of the system was derived from the packet error rate using a two-ray path loss model for a typical highway topology. The throughput was analyzed for each data rate, which allowed the performance at the different data rates to be compared. The analysis method can be easily applied to different topologies by substituting an appropriate target path loss model.

Resilience against Adversarial Examples: Data-Augmentation Exploiting Generative Adversarial Networks

  • Kang, Mingu;Kim, HyeungKyeom;Lee, Suchul;Han, Seokmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권11호
    • /
    • pp.4105-4121
    • /
    • 2021
  • Recently, malware classification based on Deep Neural Networks (DNN) has gained significant attention due to the rise in popularity of artificial intelligence (AI). DNN-based malware classifiers are a novel solution to combat never-before-seen malware families because this approach is able to classify malwares based on structural characteristics rather than requiring particular signatures like traditional malware classifiers. However, these DNN-based classifiers have been found to lack robustness against malwares that are carefully crafted to evade detection. These specially crafted pieces of malware are referred to as adversarial examples. We consider a clever adversary who has a thorough knowledge of DNN-based malware classifiers and will exploit it to generate a crafty malware to fool DNN-based classifiers. In this paper, we propose a DNN-based malware classifier that becomes resilient to these kinds of attacks by exploiting Generative Adversarial Network (GAN) based data augmentation. The experimental results show that the proposed scheme classifies malware, including AEs, with a false positive rate (FPR) of 3.0% and a balanced accuracy of 70.16%. These are respective 26.1% and 18.5% enhancements when compared to a traditional DNN-based classifier that does not exploit GAN.

Intelligent Robust Base-Station Research in Harsh Outdoor Wilderness Environments for Wildsense

  • Ahn, Junho;Mysore, Akshay;Zybko, Kati;Krumm, Caroline;Lee, Dohyeon;Kim, Dahyeon;Han, Richard;Mishra, Shivakant;Hobbs, Thompson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.814-836
    • /
    • 2021
  • Wildlife ecologists and biologists recapture deer to collect tracking data from deer collars or wait for a drop-off of a deer collar construction that is automatically detached and disconnected. The research teams need to manage a base camp with medical trailers, helicopters, and airplanes to capture deer or wait for several months until the deer collar drops off of the deer's neck. We propose an intelligent robust base-station research with a low-cost and time saving method to obtain recording sensor data from their collars to a listener node, and readings are obtained without opening the weatherproof deer collar. We successfully designed the and implemented a robust base station system for automatically collecting data of the collars and listener motes in harsh wilderness environments. Intelligent solutions were also analyzed for improved data collections and pattern predictions with drone-based detection and tracking algorithms.

Optimizing Concurrent Spare Parts Inventory Levels for Warships Under Dynamic Conditions

  • Moon, Seongmin;Lee, Jinho
    • Industrial Engineering and Management Systems
    • /
    • 제16권1호
    • /
    • pp.52-63
    • /
    • 2017
  • The inventory level of concurrent spare parts (CSP) has a significant impact on the availability of a weapon system. A failure rate function might be of particular importance in deciding the CSP inventory level. We developed a CSP optimization model which provides a compromise between purchase costs and shortage costs on the basis of the Weibull and the exponential failure rate functions, assuming that a failure occurs according to the (non-) homogeneous Poisson process. Computational experiments using the data obtained from the Korean Navy identified that, throughout the initial provisioning period, the optimization model using the exponential failure rate tended to overestimate the optimal CSP level, leading to higher purchase costs than the one using the Weibull failure rate. A Pareto optimality was conducted to find an optimal combination of these two failure rate functions as input parameters to the model, and this provides a practical solution for logistics managers.

Wireless Traffic Light using Artificial Intelligence

  • Hong, You-Sik;Kim, Chong-Soo;Kim, Chang-Kyun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권2호
    • /
    • pp.251-257
    • /
    • 2003
  • In this paper, we wish to construct a optimal traffic cycle using wire remote control. if police vehicle or ambulance suddenly enter the traffic Intersection, it will increase the traffic accident. In this paper, wireless traffic light use the radio traffic control signal and research about the hardware manufacture to check special detectors on urgency vehicles may safety and rapidly enter traffic intersection. Also, this paper present a traffic signal control conditions that analyzes different traffic intersection flows in cases of saturated flows, where the real traffic volume demand is large and the capacity constraints of bottlenecks have significant effects on the flow patterns. Through computer simulation this wireless traffic light has been proven to be much more safety and efficient than fixed traffic signal light which does not consider emergency vehicles for safety escort.

Analyzing the Modern Warfare and Weapon Systems Supported by Improved GPS Informations

  • Ko, Kwang-Soob
    • 해양환경안전학회지
    • /
    • 제21권3호
    • /
    • pp.234-239
    • /
    • 2015
  • This paper focuses on analyzing the modern warfare and weapon systems supported by improved GPS informations. The GPS capability was investigated through the real experimental test for verifying the most recent GPS features under its modernization processing. And then it was verified that such capabilities, accuracy and availability, of a typical L1, C/A code GPS receiver are equivalent to the military receiver's ones. It was also sure that the influence of GPS improved informations on NCW(Network-Centric Warfare), PGM(Precision Guided Munition) and C4SIR(Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance) should be increased and the modern warfare may be strongly dependent on GNSS informations.

연속류 uTSN 수집 데이터 가공 방안 (Processing the Data from the uTSN of Uninterrupted Traffic Flow)

  • 박은미;서의현
    • 지능정보연구
    • /
    • 제16권1호
    • /
    • pp.57-69
    • /
    • 2010
  • uTSN(ubiquitous Transportation Sensor Network)의데이터수집환경은기존ITS(Intelligent Transportation System) 환경과 커다란 차이가 있다. 지점 혹은 구간 검지체계를 근간으로 불연속적인 데이터를 수집하는 ITS 환경과 달리, 유비쿼터스 교통환경에서는 연속적인 개별차량 데이터의 취득이 가능하다. 또한 대응전략 구사에 있어서도, 구간단위 제어나 정보제공만 가능했던 ITS와 달리, 유비쿼터스 환경에서는 개별차량단위의 미세제어가 가능하다. 이러한 환경변화에 맞추어 수집데이터의 가공방식도 새로이 개발되어야 한다. 연속류 uTSN 환경에서 수집된 개별차량 위치와 개별차량 속도 데이터를 대상으로, 가공의 1차적 목적인 교통상황 판단을 위한 가공 방안을 제시하였다. uTSN으로부터 수집된 개별차량 단위 데이터를 기존 ITS와 같은 방식으로 집락하여 가공한다고 하면 그 미세한 정보는 다 손실되고 평균적 추세만 남게 된다. 본 연구에서는 수집 데이터에 담겨있는 미세한 정보를 손실하지 않음과 동시에 교통상황판단에 효과적인 정보를 생성하는 가공방식으로서, 3차원 속도, 교통량, 밀도 프로파일, 차량군 프로파일, 충격파 프로파일 생성을 제안하였다. 특히 밀도, 차량군, 충격파 정보는 교통상황 판단에 효과적이나 기존 ITS환경에서는 생성이 불가능하였던 것들이다. 본 연구에서는 모든 차량에 센서가 부착되어 있을 경우를 가정한 가공방안을 제시하였고, 장착율이 100%가 아닐 경우, 장착율에따라수집데이터를전수화하여프로파일작성하는방안을향후과제로남겨둔다.

도로표지판 인식을 위한 사영 변환을 이용한 왜곡된 표지판의 기하교정 (Geometrical Reorientation of Distorted Road Sign using Projection Transformation for Road Sign Recognition)

  • 임희철;코식뎁;조강현
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1088-1095
    • /
    • 2009
  • In this paper, we describe the reorientation method of distorted road sign by using projection transformation for improving recognition rate of road sign. RSR (Road Sign Recognition) is one of the most important topics for implementing driver assistance in intelligent transportation systems using pattern recognition and vision technology. The RS (Road Sign) includes direction of road or place name, and intersection for obtaining the road information. We acquire input images from mounted camera on vehicle. However, the road signs are often appeared with rotation, skew, and distortion by perspective camera. In order to obtain the correct road sign overcoming these problems, projection transformation is used to transform from 4 points of image coordinate to 4 points of world coordinate. The 4 vertices points are obtained using the trajectory as the distance from the mass center to the boundary of the object. Then, the candidate areas of road sign are transformed from distorted image by using homography transformation matrix. Internal information of reoriented road signs is segmented with arrow and the corresponding indicated place name. Arrow area is the largest labeled one. Also, the number of group of place names equals to that of arrow heads. Characters of the road sign are segmented by using vertical and horizontal histograms, and each character is recognized by using SAD (Sum of Absolute Difference). From the experiments, the proposed method has shown the higher recognition results than the image without reorientation.

대조학습 방법을 이용한 주행패턴 분석 기법 연구 (Research on Driving Pattern Analysis Techniques Using Contrastive Learning Methods)

  • 정회준;김승하;김준희;권장우
    • 한국ITS학회 논문지
    • /
    • 제23권1호
    • /
    • pp.182-196
    • /
    • 2024
  • 자동차 보급과 교통 시설 발달로 인한 문제에 대응하여, ADAS와 같은 운전 보조 기술이 주목받고 있다. 최근에는 스마트폰 내장 센서를 사용한 운전패턴 분석 방법론이 개발되었다. 이 연구에서는 레이블 없이 대조학습을 통해 운전패턴의 특징을 학습하고 변화점을 감지하는 새로운 방법을 제안한다. 이 방법은 운전패턴 분류에도 확장 가능하여, 매우 적은 레이블링 데이터만으로 높은 분류 성능을 달성할 수 있음은 물론 적용 차량이 달라지는 도메인 변화 문제에 민감하게 반응하지 않아 일반화된 성능을 달성할 수 있다는 장점을 가지고 있다. 또한 본 연구에서는 추후 스마트폰 적용성을 고려하여 6가지 대표적인 경량화 딥러닝 모델에 대해 제안하는 방법을 적용하고 비교분석하여 추후 스마트폰 기반의 시스템 개발에 활용할 수 있도록 하였다.