• Title/Summary/Keyword: intelligence information society

Search Result 3,527, Processing Time 0.047 seconds

Elicitation of Collective Intelligence by Fuzzy Relational Methodology (퍼지관계 이론에 의한 집단지성의 도출)

  • Joo, Young-Do
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.17-35
    • /
    • 2011
  • The collective intelligence is a common-based production by the collaboration and competition of many peer individuals. In other words, it is the aggregation of individual intelligence to lead the wisdom of crowd. Recently, the utilization of the collective intelligence has become one of the emerging research areas, since it has been adopted as an important principle of web 2.0 to aim openness, sharing and participation. This paper introduces an approach to seek the collective intelligence by cognition of the relation and interaction among individual participants. It describes a methodology well-suited to evaluate individual intelligence in information retrieval and classification as an application field. The research investigates how to derive and represent such cognitive intelligence from individuals through the application of fuzzy relational theory to personal construct theory and knowledge grid technique. Crucial to this research is to implement formally and process interpretatively the cognitive knowledge of participants who makes the mutual relation and social interaction. What is needed is a technique to analyze cognitive intelligence structure in the form of Hasse diagram, which is an instantiation of this perceptive intelligence of human beings. The search for the collective intelligence requires a theory of similarity to deal with underlying problems; clustering of social subgroups of individuals through identification of individual intelligence and commonality among intelligence and then elicitation of collective intelligence to aggregate the congruence or sharing of all the participants of the entire group. Unlike standard approaches to similarity based on statistical techniques, the method presented employs a theory of fuzzy relational products with the related computational procedures to cover issues of similarity and dissimilarity.

Crowd Activity Recognition using Optical Flow Orientation Distribution

  • Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2948-2963
    • /
    • 2015
  • In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.

Review of medical imaging systems, medical imaging data problems, and XAI in the medical imaging field

  • Sun-Kuk Noh
    • Journal of Internet Computing and Services
    • /
    • v.25 no.5
    • /
    • pp.53-65
    • /
    • 2024
  • Currently, artificial intelligence (AI) is being applied in the medical field to collect and analyze data such as personal genetic information, medical information, and lifestyle information. In particular, in the medical imaging field, AI is being applied to the medical imaging field to analyze patients' medical image data and diagnose diseases. Deep learning (DL) of deep neural networks such as CNN and GAN have been introduced to medical image analysis and medical data augmentation to facilitate lesion detection, quantification, and classification. In this paper, we examine AI used in the medical imaging field and review related medical image data acquisition devices, medical information systems for transmitting medical image data, problems with medical image data, and the current status of explainable artificial intelligence (XAI) that has been actively applied recently. In the future, the continuous development of AI and information and communication technology (ICT) is expected to make it easier to analyze medical image data in the medical field, enabling disease diagnosis, prognosis prediction, and improvement of patients' quality of life. In the future, AI medicine is expected to evolve from the existing treatment-centered medical system to personalized healthcare through preemptive diagnosis and prevention.

Research trends in hypertext information retrieval (하이퍼텍스트 정보검색에 관한 연구동향)

  • 이영자
    • Journal of Korean Library and Information Science Society
    • /
    • v.21
    • /
    • pp.57-86
    • /
    • 1994
  • The purpose of the study is to understand the research trends in the hypertext information retrieval. Around 30 related papers were investigated, from which three distinctive streams of research trends are grasped: 1) a trend of incorporating the traditional retrieval models, especially the query-based searching model into the hypermedia system. 2) a trend of a n.0, pplying the hypermedia system as an interface to the OPAC system, 3) a trend of incorporating the artificial intelligence techniques into the hypermedia techniques. The research on the hypermedia is going on, and the research directions will be increasingly intend to incorporate the traditional retrieval models and artificial intelligence techniques into the hypermedia system.

  • PDF

A Study on the Current State of the Library's AI Service and the Service Provision Plan (도서관의 인공지능(AI) 서비스 현황 및 서비스 제공 방안에 관한 연구)

  • Kwak, Woojung;Noh, Younghee
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.1
    • /
    • pp.155-178
    • /
    • 2021
  • In the era of the 4th industrial revolution, public libraries need a strategy for promoting intelligent library services in order to actively respond to changes in the external environment such as artificial intelligence. Therefore, in this study, based on the concept of artificial intelligence and analysis of domestic and foreign artificial intelligence related trends, policies, and cases, we proposed the future direction of introduction and development of artificial intelligence services in the library. Currently, the library operates a reference information service that automatically provides answers through the introduction of artificial intelligence technologies such as deep learning and natural language processing, and develops a big data-based AI book recommendation and automatic book inspection system to increase business utilization and provide customized services for users. Has been provided. In the field of companies and industries, regardless of domestic and overseas, we are developing and servicing technologies based on autonomous driving using artificial intelligence, personal customization, etc., and providing optimal results by self-learning information using deep learning. It is developed in the form of an equation. Accordingly, in the future, libraries will utilize artificial intelligence to recommend personalized books based on the user's usage records, recommend reading and culture programs, and introduce real-time delivery services through transport methods such as autonomous drones and cars in the case of book delivery service. Service development should be promoted.

Development of Rotating Equipment Anomaly Detection Algorithm based-on Artificial Intelligence (인공지능 기반 회전기기 이상탐지 알고리즘 개발)

  • Jeon, Yechan;Lee, Yonghyun;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.57-60
    • /
    • 2021
  • 본 논문에서는 기지 설비 중 주요 회전기기인 펌프의 이상탐지 알고리즘을 제안한다. 현재 인공지능을 활용하여 생산현장을 혁신하고자 하는 시도가 진행되고 있으나 외산 솔루션에 대한 의존도가 높은 것에 비해 국내 실정에 맞지 않는 경우가 많다. 이에 따라, 선행 연구를 통해 국내 실정에 맞는 인공지능 기술 도입이 필요하다. 본 연구에서는 VAE(Variational Auto Encoder) 알고리즘을 활용해 회전기기의 고장을 진단하는 알고리즘을 개발하였다. 본 연구 수행을 통한 회전기기의 고장 예지·진단 시스템 개발로 설비의 이상 징후 포착, 부품의 교환 시기 등 보수 일정을 예측하고 최종적으로 이를 통한 설비 가동의 효율 증대와 에너지 비용 감소의 효과를 기대한다.

  • PDF

Web based Microservice Framework for Survival Analysis of Lung Cancer Patient using Digital Twin (디지털 트윈을 사용하는 폐암환자 생존분석을 위한 웹 기반 마이크로 서비스 프레임워크)

  • Kolekar, Shivani Sanjay;Yeom, Sungwoong;Choi, Chulwoong;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.537-540
    • /
    • 2021
  • One of the most promising technologies that is raised from the fourth industrial revolution is Digital Twin (DT). A DT captures attributes and behaviors of the entity suitable for communication, storage, interpretation or processing within certain context. A digital twin based on microservice framework architecture is proposed in this paper which identifies elements required for the complete orchestration of microservice based Survival Analysis of Lung Cancer Patients. Integration of microservices and Digital Twin Technology is studied.

Prompt Tuning for Facial Action Unit Detection in the Wild

  • Vu Ngoc Tu;Huynh Van Thong;Aera Kim;Soo-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.732-734
    • /
    • 2023
  • Facial Action Units Detection (FAUs) problem focuses on identifying various detail units expressing on the human face, as defined by the Facial Action Coding System, which constitutes a fine-grained classification problem. This is a challenging task in computer vision. In this study, we propose a Prompt Tuning approach to address this problem, involving a 2-step training process. Our method demonstrates its effectiveness on the Affective in the Wild dataset, surpassing other existing methods in terms of both accuracy and efficiency.

Artificial Intelligence-based Crack Segmentation Algorithm for Safety diagnosis of old buildings (노후 건축물 안전진단을 위한 AI기반 균열 구획화 알고리즘)

  • Hee Ju Seo;Byeong Il Hwang;Dong Ju Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.13-14
    • /
    • 2023
  • 집중 안전 점검의 대상인 노후 건축물에서 균열은 건물의 안전도를 점검할 수 있는 지표이다. 안전 점검에 드론을 활용하면서 고해상도의 드론 기반 균열 이미지 수집이 가능해졌고, 육안이 아닌 AI기반으로 균열을 탐지, 구획화할 수 있다. 본 연구에서는 주변 사물과 배경에 구애받지 않고 안전 점검이 가능한 구획화 알고리즘을 제안한다. METU와 POC데이터셋을 가공하여 데이터셋을 구축하고, 이를 바탕으로 ResNet50을 통해 균열과 유사한 배경을 분류하였으며, 균열 구획화 모델을 선정하여 DesneNet201-UNet++으로 mIoU 82.27%를 달성하였다. 본 연구는 노후 건축물 안전 점검에 필요한 균열 폭 추정에 도움이 될 것으로 기대된다.

  • PDF