• Title/Summary/Keyword: integrity assessment

Search Result 554, Processing Time 0.023 seconds

Effect of Local Wall Thinning on Pipe Elastic Bending Compliance (국부 감육이 배관 굽힘 컴플라이언스에 미치는 영향 )

  • Ki-Wan Seo;Jae-Min Gim;Yun-Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.83-89
    • /
    • 2021
  • The thickness of pipe can be locally reduced during operation due to wall thinning. Due to its significance on structural integrity, many non-destructive detecting techniques and assessment methods are available. In this study, the elastic bending compliance of local wall-thinned pipe is presented in terms of the wall thinning geometry: wall thinning depth, circumferential angle and longitudinal length. Elastic finite element (FE) analysis further shows that the presented equation can be used for any wall thinning shape. The proposed solution differs from FE results by less than 6% for all cases analyzed. The bending compliance increases linearly with increasing longitudinal thinning length and non-linearly with increasing thinning angle and depth.

Approximate residual stress and plastic strain profiles for laser-peened alloy 600 surfaces

  • Eui-Kyun Park ;Hyun-Jae Lee ;Ju-Hee Kim ;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1250-1264
    • /
    • 2023
  • This paper presents approximate in-depth residual stress and plastic strain profiles for laser-peened alloy 600 surface via FE analysis. In approximations, effects of the initial welding residual stress and the number of shots are quantified. Based on FE analysis results, residual stress profiles are quantified by two variables; the maximum difference in stress before and after LSP, and the depth up to which the compressive residual stress exists. Plastic strain profiles are quantified by one variable, the maximum equivalent plastic strain at the surface. The proposed profiles are validated by comparing with published LSP experimental results for welded plates. Effects of the initial welding residual stress and the number of shots on these variables are discussed. The proposed profile can be directly applied to predict the mitigation effect of LSP on PWSCC and to efficiently perform structural integrity assessment of laser peened nuclear components.

Probabilistic seismic risk assessment of a masonry tower considering local site effects

  • Ozden Saygili
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.191-201
    • /
    • 2024
  • A comprehensive probabilistic seismic hazard analysis was carried out in Istanbul to examine the seismotectonic features of the region. The results showed that earthquakes can trigger one another, resulting in the grouping of earthquakes in both time and space. The hazard analysis utilized the Poisson model and a conventional integration technique to generate the hazard curve, which shows the likelihood of ground motion surpassing specific values over a given period. Additionally, the study evaluated the impact of seismic hazard on the structural integrity of an existing masonry tower by simulating its seismic response under different ground motion intensities. The study's results emphasize the importance of considering the seismotectonic characteristics of an area when assessing seismic hazard and the structural performance of buildings in seismic-prone regions.

Development of a new CVAP structural analysis methodology of APR1400 reactor internals using scaled model tests

  • Jongsung Moon;Inseong Jin;Doyoung Ko;Kyuhyung Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.309-316
    • /
    • 2024
  • The U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide (RG) 1.20 provides guidance on the comprehensive vibration assessment program (CVAP) to be performed on reactor internals during preoperational and startup tests. The purpose of the program is to identify loads that could cause vibration in the reactor internals and to ensure that these vibrations do not affect their structural integrity. The structural vibrational analysis program involves creating finite element analysis models of the reactor internals and calculating their structural responses when subjected to vibration loads. The appropriateness of the structural analysis methodology must be demonstrated through benchmarks or any other reasonable means. Although existing structural analysis methodologies have been proven to be appropriate and are widely used, this paper presents the development of an improved new structural analysis methodology for APR1400 reactor internals using scaled model tests.

The Consistency Assessment of Topological Relationships For a Collapse Operator in Multi-Scale Spatial Databases (다중축척 공간 데이터베이스의 축소연산자를 위한 위상관계 일관성 평가)

  • Kang Hae-Kyong;Li Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.12D no.6 s.102
    • /
    • pp.837-848
    • /
    • 2005
  • A multi-scale database is a set of spatial database, covering same geographic area with different scales and it can be derived from pre-existing databases. In the derivation processes of a new multi-scale spatial database, the geometries and topological relations on the source database can be transformed and the transformation can be the cause of the lack of integrity Therefore, it is necessary to assess the transformation whether it is consistent or not after the derivation process of a new multi-scale database. Thus, we propose assessment methods for the topological consistency between a source database and a derived multi-scale database in this paper. In particular, we focus on the case that 2-dimensional objects are collapsed to 1-dimensional ones in the derivation process of a multi-scale database. We also describe implementation of the assessment methods and show the results of the implementation with experimental data.

Assessment of Inhabitation and Species Diversity of Fish to Substrate Size in the Geum River Basin (금강수계에서 하상재료에 따른 어류의 종다양성 및 서식지 평가)

  • Hur, Jun Wook;In, Dong Soo;Jang, Min Ho;Kang, Hyoengsik;Kang, Kyoung Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.845-856
    • /
    • 2011
  • In order to establish fundamental data for stream restoration and environmental flow, we investigated inhabitation and species diversity of fish to substrate size in the typical streams of Geum River Basin. Field monitoring including fish sampling was conducted from October 2007 to October 2009. Substrate size was determined according to six different : silt (Si), sand (Sa), fine gravel (Fg), coarse gravel (Cg), cobbles (Co) and boulders (Bo). A total number of fish caught in the 18 sites was 7,649 representing 10 families 50 species, and Si, Sa, Fg, Cg, Co and Bo stations occupied 30, 29, 38, 30, 27 and 17 species, respectively. The most frequently found species in number was pale chum (Zacco platypus, 29.7%, n=2,275) followed by Z. koreanus (22.5%, n=1,720) in total stations. Biological diversity with increase of substrate size from the dominance of part species showed higher values as dominance index, lower and diversity, richness and evenness index. Index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) scores decreased with increase of substrate size. Therefore, it is necessary to make an effort on stream rehabilitation with evaluation of physical habitat condition by indicator species in order to maintain biodiversity and perform ecological restoration.

A Study on the Fracture Behavior of a Two Dimensional Crack in Gas Pipelines Considering Constraint Effects (구속효과를 구려한 가스배관 결함의 2차원적 파괴거동 해석에 관한 연구)

  • Sim, Do-Jun;Jang, Yeong-Gyun;Choe, Jae-Bung;Kim, Yeong-Jin;Kim, Cheol-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • EFP(Fitness For Purpose) type defect assessment methodologies based on ECA(Engineering Critical Analysis) have been established and are in use for the structural integrity evaluation of gas pipelines. ECA usually includes the fracture mechanics analysis, and it is assumed that the J-integral uniquely characterizes the crack-tip stress-strain field. However, it has been proven that the J-integral alone can not be sufficient to characterize the crack-tip field under low levels of constraint with a single parameter. Since pipeline structures are made of ductile material, locally loaded in tension, cracks may experience low level of constraint, and therefore, J-dominance will be lost. For this reason, the level of constraint must be quantified to establish a precise assessment procedure for pipeline defects. The objective of this paper is to investigate the fracture behavior of a crack in gas pipeline(KS D 3507) by quantifying the level of constraint. For this purpose, tensile tests and CTOD tests were performed at room temperature(24$\^{C}$) and low temperature(-40$\^{C}$) to obtain the material properties. J-Q analyses were performed for SENB and SENT specimens based on 2-D finite element analyses, in order to investigate the in-plane constraint effects on pipeline defects. For precise assessment of cracks, especially shallow cracks, in KS D 3507 pipeline, constraint effect must be considered.

Acoustic Emission Signal Analysis for Damage Assessment of the Reinforced Concrete Slab Structures (철근 콘크리트 슬래브 구조 손상 평가를 위한 음향방출 신호분석)

  • Kim, Jeong-Hee;Han, Byeong-Hee;Seo, Dae-Cheol;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.360-367
    • /
    • 2009
  • The acoustic emission(AE) behavior of reinforced concrete slab under flexural loading was investigated to assess the integrity. This study was aimed at identifying the characteristics of AE response associated with damage development. By applying cyclic loading in various load steps, it was able to differentiate each AE source such as distributed micro crack initiation, friction, flexural crack and localized diagonal tension crack. The secondary peak and the change of AE hit rate gave valuable criteria fur assessment. From the analysis of the felicity ratio, furthermore, it was shown that this values can be used for evaluating the degree of concrete damage. Based on the experimental results, this approach for practical AE application may provide a promising method for estimating the level of damage and distress in concrete structures.

Post Closure Long Term Safely of the Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장 불량 용기 발생 시나리오에 대한 폐쇄후 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.105-112
    • /
    • 2004
  • A waste container, one of the key components of a multi-barrier system in a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic medium and the swelling pressure of the bentonite buffer. Also, it delays potential release of radionuclides for a certain period of time, before it is corroded by intruding impurities. Even though the material of a waste container is carefully chosen and its manufacturing processes are under quality assurance processes, there is a possibility of initial defects in a waste container during manufacturing. Also, during the deposition of a waste container in a repository, there is a chance of an incident affecting the integrity of a waste container. In this study, the appropriate Features, Events, and Processes(FEP's) to describe these incidents and the associated scenario on radionuclide release from a container to the biosphere are developed. Then the total system performance assessment on the Initial waste Container Failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set used in this paper, the annual individual dose for the ICF scenario meets the Korean regulation on the post closure radiological safety of a repository.

  • PDF

Safety Assessment of By-product Gas Piping after Design Change (부생가스 연료배관의 설계변경에 따른 안전성 평가)

  • Yoon, Kee Bong;Nguyen, Van Giang;Nguyen, Tuan Son;Jeong, Seong Yong;Lee, Joo Young;Kim, Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.50-58
    • /
    • 2013
  • Various process piping usually carries out high flammable and explosible gas under high pressure and high temperature. Due to frequent change of design and structure it becomes more complicated and compactly located. The safety management level is relatively low since it is considered as simply designed component. In this study a safety assessment procedure is proposed for complicated piping system around a mixing drum in which natural gas and by-product gases were mixed. According to ASME code, pipe stress analysis was conducted for determining design margin at some key locations of the piping. These high stress locations can be used as major inspection points for managing the pipe integrity. Sensitivity analysis with outside temperature of the pipe and support constraint condition. Possible effect of hydroen gas to the pipe steel during the previous use of the by-product gas was also discussed.