• 제목/요약/키워드: integrity assessment

검색결과 552건 처리시간 0.028초

Hydraulic and Structural Analysis for APR1400 Reactor Vessel Internals against Hydraulic Load Induced by Turbulence

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Tae Soon
    • International Journal of Safety
    • /
    • 제10권2호
    • /
    • pp.1-5
    • /
    • 2011
  • The structural integrity assessment of APR1400 (Advanced Power Reactor 1400) reactor vessel internals has been being performed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program prior to commercial operation. The program is composed of a hydraulic and structural analysis, a vibration measurement, and an inspection. This paper describes the hydraulic and structural analysis on the reactor vessel internals due to hydraulic loads caused by the turbulence of reactor coolant. Three-dimensional models were built for the hydraulic and structural analysis and then hydraulic loads and structural responses were predicted for five analysis cases with CFX and ANSYS respectively. The structural responses show that the APR1400 reactor vessel internals have sufficient structural integrity in comparison with the acceptance criteria.

  • PDF

함정 디젤발전기 데이터기반 건전성 예측모델에 관한 연구 (Integrity Prediction Model of Data-driven Diesel Generator for Naval Vessels)

  • 김동진;심재순;김민곤
    • 한국추진공학회지
    • /
    • 제23권4호
    • /
    • pp.98-103
    • /
    • 2019
  • 함정 운용 장비의 건전성 예측은 유지보수의 효율성 및 긴박한 상황에서의 운용성능 유지를 위한 필수 요소이다. 최근 함정의 양적인 증가와 작전반경 확대에 따라 운용성능 유지를 위해 통합조건평가시스템(ICAS)을 도입하여 운용중이며, 관련기술 국산화를 위해 다각도로 연구가 진행되고 있다. 본 논문에서는 함정 운용 장비인 디젤발전기의 건전성 예측방법 중 데이터기반 모델 적용에 대한 결과를 제시 하였다.

다변수 메트릭 모델을 이용한 식장산 계곡천의 생태 건강성 평가 (Ecological Health Assessment of Mountainous Stream in Mt. Sik-Jang using Multi-metric Models)

  • 배대열;김유표;안광국
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.156-163
    • /
    • 2008
  • This study was to introduce a methodology of ecological health assessment for efficient management and to provide some diagnostic results of the survey. We evaluated ecological health assessment at five sampling locations of Sikjang Mountainous Stream using the index of biological integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) during May - October 2006. The health condition, based on the IBI model, averaged 32 and varied from 27 to 37 depending on the sampling sites. Thus, the stream health was judged as "good" to "fair" conditions. IBI values showed slight differences between upstream and downstream sites. Whereas, QHEI values varied from 75 (fair condition) to 196 (excellent condition) and QHEI at St. 4~5, indicating the downstream reach had significantly lower than the headwater site (St.1). Regression analyses also showed that QHEI values had a linear decrease from the headwater to downstream. This result indicated that habitat quality was rapidly degradated by human influence. Overall, data of IBI and QHEI suggested that the stream health was maintained well in the present but the habitat and biological quality were partially degradated in the downstream. So, the human interference should be minimized to protect the downstream environment.

용접 재료 개발 단계에서 ECA 기법을 통한 재료의 인성 적합성 평가 (Application of Engineering Critical Assessment Method in the Development Stage of Welding Consumables)

  • 신용택;조영주;서대곤
    • Journal of Welding and Joining
    • /
    • 제34권6호
    • /
    • pp.16-19
    • /
    • 2016
  • Needs for structural integrity procedure such as BS 7910, the nuclear industry document R6 Rev.4 and the European FITNET procedure are being increased in industry. Especially, BS 7910 allows metallic structures to be assessed on the basis of fracture mechanics analysis rather than strict adherence to design and fabricated codes. This study is to propose the flaw assessment to judge the toughness level of welding consumables at the development stage. The FCA welding consumables with YP 690MPa and CTOD over 0.25 mm have been developed and its allowable weld flaw size considering actually applied environment has been evaluated. Since the estimated allowable defect size is sufficiently detectable in nondestructive testing, the toughness of the developed material is judged to be appropriate and no problem in securing the structural integrity.