• Title/Summary/Keyword: integrin binding site

Search Result 4, Processing Time 0.027 seconds

Characterization of αX I-Domain Binding to Receptors for Advanced Glycation End Products (RAGE)

  • Buyannemekh, Dolgorsuren;Nham, Sang-Uk
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.355-362
    • /
    • 2017
  • The ${\beta}2$ integrins are cell surface transmembrane proteins regulating leukocyte functions, such as adhesion and migration. Two members of ${\beta}2$ integrin, ${\alpha}M{\beta}2$ and ${\alpha}X{\beta}2$, share the leukocyte distribution profile and integrin ${\alpha}X{\beta}2$ is involved in antigen presentation in dendritic cells and transendothelial migration of monocytes and macrophages to atherosclerotic lesions. ${\underline{R}}eceptor$ for ${\underline{a}}dvanced$ ${\underline{g}}lycation$ ${\underline{e}}nd$ ${\underline{p}}roducts$ (RAGE), a member of cell adhesion molecules, plays an important role in chronic inflammation and atherosclerosis. Although RAGE and ${\alpha}X{\beta}2$ play an important role in inflammatory response and the pathogenesis of atherosclerosis, the nature of their interaction and structure involved in the binding remain poorly defined. In this study, using I-domain as a ligand binding motif of ${\alpha}X{\beta}2$, we characterize the binding nature and the interacting moieties of ${\alpha}X$ I-domain and RAGE. Their binding requires divalent cations ($Mg^{2+}$ and $Mn^{2+}$) and shows an affinity on the sub-micro molar level: the dissociation constant of ${\alpha}X$ I-domains binding to RAGE being $0.49{\mu}M$. Furthermore, the ${\alpha}X$ I-domains recognize the V-domain, but not the C1 and C2-domains of RAGE. The acidic amino acid substitutions on the ligand binding site of ${\alpha}X$ I-domain significantly reduce the I-domain binding activity to soluble RAGE and the alanine substitutions of basic amino acids on the flat surface of the V-domain prevent the V-domain binding to ${\alpha}X$ I-domain. In conclusion, the main mechanism of ${\alpha}X$ I-domain binding to RAGE is a charge interaction, in which the acidic moieties of ${\alpha}X$ I-domains, including E244, and D249, recognize the basic residues on the RAGE V-domain encompassing K39, K43, K44, R104, and K107.

Chitosan surface grafted with fusion protein of FGF-2 and Fibronectin-FGF for tissue regeneration therapy

  • Hwang, Jeong-Hyo;Lee, Jue-Yeon;Kim, Sun-Chul;Jang, Jun-Hyeog;Ku , Young;Chung, Chong-Pyoung;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.231.3-232
    • /
    • 2003
  • The biomedical applications of chitosan have been widely researched. FN mediates its biological effects through binding to the hetero-dimeric transmembrane glycoproteins, integrins, which physically couple the cytoskeleton to the ECM. FN binds to the integrin through a consensus site including the Arg-Gly-Asp (RGD) sequence within tenth type III module (Ruoslahti & Pierschbacher 1987). A short sequence Pro-His-Ser-Arg-Asn (PHSRN) has also been identified as a synergistic motif within ninth type III module for binding to ${\alpha}$5${\beta}$1 integrin (Aota et al. 1994). (omitted)

  • PDF

Development of DNA Vaccine Against Red Sea Bream Iridovirus (RSIV)

  • PARK SO-JIN;SEO HYO-JIN;SON JEONG HWA;KIM HYOUNG-JUN;KIM YUN-IM;KIM KI-HONG;NAM YOON-KWON;KIM SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.873-879
    • /
    • 2005
  • Red sea bream iridovirus (RSIV) obtained from infected rock bream was propagated by Bluegill fry-2 (BF-2) cell culture. The virus titer was determined as $10^{5.5}\;TCID_{50}/ml$ on confluent BF-2 cell monolayers. The integrin binding site of ORF 055L of infectious spleen and kidney necrosis virus (ISKNV) was selected for the construction of a primer to obtain the RSIV ORF 055L gene. The genes were amplified using RSIV gene lyzate by PCR. The homologies of the ORF 055L sequence of RSIV with ISKNV and rock bream iridovirus (RBIV) were approximately $96\%$ and $100\%$, respectively. DNA vaccine was constructed by cloning the ORF 055L of RSN into pcDNA 3.1 (+), containing a cytomegalovirus (CMV) promoter. For antibody production, pcDNA-055 DNA vaccine was injected to BALB/c mice. The production of antibodies against pcDNA-055 DNA vaccine was confirmed by the Western blot analysis. The antibodies produced by the pcDNA-055 DNA vaccine showed efficacy to neutralize the RSIV in the neutralization test in BF-2 cell culture.

Functional characterization of the distal long arm of laminin: Characterization of Cell- and heparin binding activities

  • Sung, Uhna;O′Rear, Julian J.;Yurchenco, Peter D.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.107-113
    • /
    • 1995
  • Basement membrane laminin is a multidomain glycoprotein that interacts with itself, heparin and cells. The distal long arm plays major cell and heparin interactive roles. The long arm consists of three subunits (A, B1, B2) joined in a coiled-coil rod attached to a terminal A chain globule (G). The globule is in turn subdivided into five subdomains (Gl-5). In order to analyze the functions of this region, recombinant G domains (rG, rAiG, rG5, rGΔ2980-3028) were expressed in Sf9 insect cells using a baculovirus expression vector. A hybrid molecule (B-rAiG), consisting of recombinant A chain(rAiG) and the authentic B chains (E8-B)was assembled in vitro. The intercalation of rAiG into E8-B chains suppressed a heparin binding activity identified in subdomain Gl-2. By the peptide napping and ligand blotting, the relative affinity of each subeomain to heparin was assigned as Gl> G2= G4> G5> G3, such that G1 bound strongly and G3 not at all. The active heparin binding site of G domain in intact laminin appears to be located in G4 and proximal G5. Cell binding was examined using fibrosarcoma Cells. Cells adhered to E8, B-rAiG, rAiG and rG, did not bind on denatured substrates, poorly bound to the mixture of E8-B and rG. Anti-${\alpha}$6 and anti-${\beta}$1 integrin subunit separately blocked cell adhesion on E8 and B-rAiG, but not on rAiG. Heparin inhibited cell adhesion on rAiG, partially on B-rAiG, and not on E8. In conclusion, 1) There are active and cryptic cell and heparin binding activities in G domain. 2) Triple-helix assembly inactivates cell and heparin binding activities and restores u6131 dependent cell binding activities.

  • PDF