• 제목/요약/키워드: integrin

검색결과 235건 처리시간 0.024초

The Basis of Different Sensitivities of Ovarian Cancer Cells to the Recombinant Adenoviral Vector System Containing a Tumor-Specific L-plastin Promoter and E. coli Cytosine Deaminase Gene as a Transcription Unit

  • Chung, In-Jae
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.138-143
    • /
    • 2009
  • We have reported previously on a replication incompetent recombinant adenoviral vector, AdLPCD, in which the expression of cytosine deaminase gene (CD) is driven by the tumor-specific L-plastin promoter. AdLPCD vector had been evaluated for its efficacy of chemosensitization of ovarian cancer cells to 5-FC. In spite of the fact that ovarian cancer cells, i.e., OVCAR-3 and SK-OV-3, are capable for adenoviral transduction judged by LacZ reporter gene analysis, two cell lines demonstrated quite different sensitivities toward AdLPCD/5-FC system. In OVCAR-3 cells, infection of AdLPCD followed by exposure to 5-FC resulted in the suppression of cell growth with statistical significance. On the other hand, SK-OV-3 cells were more resistant to the CD/5-FC strategy compared with OVCAR-3 cells under the same condition. The object of study was to investigate factors that would determine the sensitivity to AdLPCD/5-FC. We evaluated conversion rate of 5-FC to 5-FU after infection of AdLPCD by HPLC analysis, $IC_{50}$ of 5-FU, the expression level of integrin receptors i.e., ${\alpha}v{\beta}3$ and ${\alpha}v{\beta}5$, and status of p53 in OVCAR-3 and SK-OV-3 cells. The results indicated that OVCAR-3 cells have few favorable features compared with SK-OV-3 cells to be more effective to the AdLPCD/5-FC strategy; higher level of ${\alpha}v{\beta}5$ integrin, higher rate of conversion of 5-FC into 5-FC, and lower $IC_{50}$ of 5-FU. The results suggest that the replacement of 5-FU with CD/5-FC in combination chemotherapy would be less toxic and much greater cytotoxicity than the conventional combination chemotherapy in some patients.

The Effects of the 3-OH Group of Kaempferol on Interfollicular Epidermal Stem Cell Fate

  • Chae, Je Byeong;Choi, Hye-Ryung;Shin, Jung-Won;Na, Jung-Im;Huh, Chang-Hun;Park, Kyoung-Chan
    • Annals of dermatology
    • /
    • 제30권6호
    • /
    • pp.694-700
    • /
    • 2018
  • Background: Kaempferol (3,4',5,7-tetrahydroxyflavone) is a flavonoid known to have a wide range of pharmacological activities. The 3-OH group in flavonoids has been reported to determine antioxidant activities. Objective: We tested whether kaempferol can affect the expression of integrins and the stem cell fate of interfollicular epidermal stem cells. Methods: Skin equivalent (SE) models were constructed, and the expression levels of stem cell markers and basement membrane-related antigens were tested. The immunohistochemical staining patterns of integrins, p63, and proliferating cell nuclear antigen (PCNA) were compared between kaempferol- and apigenin-treated SE models. Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of integrins. Results: Kaempferol increased the thickness of the epidermis when added to prepare SEs. In addition, the basal cells of kaempferol-treated SEs appeared more columnar. In the immunohistological study, the expression of integrins ${\alpha}6$ and ${\beta}1$ and the numbers of p63- and PCNA-positive cells were markedly higher in the kaempferol-treated model. However, apigenin showed no effects on the formation of three-dimensional skin models. RT-PCR analysis also confirmed that kaempferol increased the expression of integrin ${\alpha}6$ and integrin ${\beta}1$. Conclusion: Our findings indicated that kaempferol can increase the proliferative potential of basal epidermal cells by modulating the basement membrane. In other words, kaempferol can affect the fate of interfollicular epidermal stem cells by increasing the expression of both integrins ${\alpha}6$ and ${\beta}1$. These effects, in particular, might be ascribed to the 3-OH group of kaempferol.

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Kwon, Tae-Uk;Choi, Hyung-Kyoon;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.591-602
    • /
    • 2019
  • Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption

  • Jang, Jin Sun;Kang, In Soon;Cha, Young-Nam;Lee, Zang Hee;Dinauer, Mary C;Kim, Young-June;Kim, Chaekyun
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.659-664
    • /
    • 2019
  • Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient ($Vav1^{-/-}$) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of $Vav1^{-/-}$ mice than in WT mice. Furthermore, the bone status of $Vav1^{-/-}$ mice was analyzed in situ and the femurs of $Vav1^{-/-}$ mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an ${\alpha}_v{\beta}_3$ integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption.

Effect of the Bifunctional Chelate on the Biodistribution of 99mTc-labeled Cyclic RGD Peptide

  • Lee, Dong-Eun;Choi, Kang-Hyuk
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.355-363
    • /
    • 2018
  • A novel $N_3S_1$ chelate, Pro-Lys-Cys (PKC) to cyclic RGD to radiolabel with $^{99m}Tc$ was conjugated in an effort to decrease the high intestinal accumulation observed for $^{99m}Tc$-labeled PGC-RGD. The target specificity of the resulting PKC-RGD was similar to that of PGC-RGD as determined by a cell binding assay and a competition binding assay. The $^{99m}Tc$ radiolabeling of PKC-RGD resulted in radiochemical yields of 98% under mild conditions at high specific activities. Biodistribution data in normal mice clearly showed a significant decrease in intestinal uptake at 2 h postinjection for the $^{99m}Tc-PKC-c$ (RGDyK) compared to the $^{99m}Tc-GC-c$ (RGDyK) (from $19.65%ID{\cdot}g^{-1}$ to $7.31%ID{\cdot}g^{-1}$ for the GI tract). The $^{99m}Tc-PKC-c$ (RGDyK) biodistribution was also shown by a higher retention of radioactivity in the whole body, but with kidney accumulation over 8-fold higher than observed with $^{99m}Tc-PGC-c$ (RGDyK) at 2 h ($12.62%ID{\cdot}g^{-1}$ for PKC-RGD and $1.54%ID{\cdot}g^{-1}$ for PGC-RGD, respectively). These results show that the biodistribution may be altered especially concerning lipophilicity resulting in renal rather than hepatobiliary excretion. This comparative study made it possible to explore the effects of lipophilicity on the biodistribution of $^{99m}Tc$-labeled c (RGDyK) through the use of different tripeptide $N_3S_1$ chelators. Therefore, $^{99m}Tc-PKC-c$ (RGDyK) may be an attractive alternative for the in vivo imaging of integrin receptors.

Far-infrared radiation stimulates platelet-derived growth factor mediated skeletal muscle cell migration through extracellular matrix-integrin signaling

  • Lee, Donghee;Seo, Yelim;Kim, Young-Won;Kim, Seongtae;Bae, Hyemi;Choi, Jeongyoon;Lim, Inja;Bang, Hyoweon;Kim, Jung-Ha;Ko, Jae-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권2호
    • /
    • pp.141-150
    • /
    • 2019
  • Despite increased evidence of bio-activity following far-infrared (FIR) radiation, susceptibility of cell signaling to FIR radiation-induced homeostasis is poorly understood. To observe the effects of FIR radiation, FIR-radiated materials-coated fabric was put on experimental rats or applied to L6 cells, and microarray analysis, quantitative real-time polymerase chain reaction, and wound healing assays were performed. Microarray analysis revealed that messenger RNA expressions of rat muscle were stimulated by FIR radiation in a dose-dependent manner in amount of 10% and 30% materials-coated. In 30% group, 1,473 differentially expressed genes were identified (fold change [FC] > 1.5), and 218 genes were significantly regulated (FC > 1.5 and p < 0.05). Microarray analysis showed that extracellular matrix (ECM)-receptor interaction, focal adhesion, and cell migration-related pathways were significantly stimulated in rat muscle. ECM and platelet-derived growth factor (PDGF)-mediated cell migration-related genes were increased. And, results showed that the relative gene expression of actin beta was increased. FIR radiation also stimulated actin subunit and actin-related genes. We observed that wound healing was certainly promoted by FIR radiation over 48 h in L6 cells. Therefore, we suggest that FIR radiation can penetrate the body and stimulate PDGF-mediated cell migration through ECM-integrin signaling in rats.

Ginsenoside Rk1 suppresses platelet mediated thrombus formation by downregulation of granule release and αIIbβ3 activation

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Irfan, Muhammad;Rhee, Man Hee;Lee, Dong-Ha
    • Journal of Ginseng Research
    • /
    • 제45권4호
    • /
    • pp.490-497
    • /
    • 2021
  • Background and objective: Synthetic ginsenoside compounds G-Rp (1,3, and 4) and natural ginsenosides in Panax ginseng 20(S)-Rg3, Rg6, F4 and Ro have inhibitory actions on human platelets. However, the inhibitory mechanism of ginsenoside Rk1 (G-Rk1) is still unclear thus, we initiated investigation of the anti-platelet mechanism by G-Rk1 from Panax ginseng. Methodology: Our study focused to investigate the action of G-Rk1 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, fibronectin adhesion, dense granule secretion, and thromboxane B2 secretion. Thrombin-induced clot retraction was also observed in human platelets. Key Results: Collagen, thrombin, and U46619-stimulated human platelet aggregation were dose-dependently inhibited by G-Rk1, while it demonstrated a more effective suppression on collagen-stimulated platelet aggregation using human platelets. Moreover, G-Rk1 suppressed collagen-induced elevation of Ca2+ release from endoplasmic reticulum, granule release, and αIIbβ3 activity without any cytotoxicity. Conclusions and implications: These results indicate that G-Rk1 possess strong anti-platelet effect, proposing a new drug candidate for treatment and prevention of platelet-mediated thrombosis in cardiovascular disease.

Comparative antiplatelet and antithrombotic effects of red ginseng and fermented red ginseng extracts

  • Irfan, Muhammad;Lee, Yuan Yee;Lee, Ki-Ja;Kim, Sung Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.387-395
    • /
    • 2022
  • Background: Fermentation may alter the bioavailability of certain compounds, which may affect their efficacy and pharmacological responses. This study investigated the antiplatelet effects of red ginseng extract (RGE) and fermented red ginseng extract (FRG). Methods: A rodent model was used to evaluate the antiplatelet and antithrombotic effects of the extracts. Rats were orally fed with human equivalent doses of the extracts for 1 week and examined for various signaling pathways using standard in vivo and ex vivo techniques. Light transmission aggregometry was performed, and calcium mobilization, dense granule secretion, integrin αIIbβ3-mediated signaling molecules, cyclic nucleotide signaling events, and various protein molecules were evaluated ex vivo in collagen-stimulated washed platelets. Furthermore, antithrombotic properties were evaluated using a standard acute pulmonary thromboembolism model, and the effects on hemostasis were investigated using rat and mice models. Results: Both RGE and FRG significantly inhibited platelet aggregation, calcium mobilization, and dense granule secretion along with integrin-mediated fibrinogen binding and fibrinogen adhesion. cAMP levels were found to be elevated in RGE-treated rat platelets. Ginseng extracts did not exert any effect on prothrombin time and activated partial thromboplastin time. RGE-treated mice showed significantly better survival under thrombosis than FRG-treated mice, with no effects on hemostasis, whereas FRG-treated mice exhibited a slight increment in bleeding time. Conclusion: Both extracts, especially RGE, are remarkable supplements to maintain cardiovascular health and are potential candidates for the treatment and prevention of platelet-related cardiovascular disorders.

Direct Contact with Platelets Induces Podoplanin Expression and Invasion in Human Oral Squamous Cell Carcinoma Cells

  • Park, Se-Young;Lee, Sun Kyoung;Lim, Mihwa;Kim, Bomi;Hwang, Byeong-Oh;Cho, Eunae Sandra;Zhang, Xianglan;Chun, Kyung-Soo;Chung, Won-Yoon;Song, Na-Young
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.284-290
    • /
    • 2022
  • Oral squamous cell carcinoma (OSCC) is mostly diagnosed at an advanced stage, with local and/or distal metastasis. Thus, locoregional and/or local control of the primary tumor is crucial for a better prognosis in patients with OSCC. Platelets have long been considered major players in cancer metastasis. Traditional antiplatelet agents, such as aspirin, are thought to be potential chemotherapeutics, but they need to be used with caution because of the increased bleeding risk. Podoplanin (PDPN)-expressing cancer cells can activate platelets and promote OSCC metastasis. However, the reciprocal effect of platelets on PDPN expression in OSCC has not been investigated. In this study, we found that direct contact with platelets upregulated PDPN and integrin β1 at the protein level and promoted invasiveness of human OSCC Ca9.22 cells that express low levels of PDPN. In another human OSCC HSC3 cell line that express PDPN at an abundant level, silencing of the PDPN gene reduced cell invasiveness. Analysis of the public database further supported the co-expression of PDPN and integrin β1 and their increased expression in metastatic tissues compared to normal and tumor tissues of the oral cavity. Taken together, these data suggest that PDPN is a potential target to regulate platelet-tumor interaction and metastasis for OSCC treatment, which can overcome the limitations of traditional antiplatelet drugs.

Antitumor Effect of Metformin in Combination with Binimetinib on Melanoma Cells

  • Lee, Eunsung;Kwon, Yongjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권2호
    • /
    • pp.93-104
    • /
    • 2021
  • Cutaneous melanoma is a fatal disease for patients with distant metastasis. Metformin is the most widely used anti-diabetic drug, and proved to suppress cell proliferation and metastasis in diverse cancers including melanoma. We previously reported that MEK inhibitor trametinib increases the expression of epithelial-mesenchymal transition (EMT) regulators and melanoma cell motility, which are suppressed by addition of metformin in A375 melanoma cells. To confirm our findings further, we first evaluated the effect of metformin in combination with another MEK inhibitor binimetinib on cell viability in G361 melanoma cells. We then investigated whether binimetinib affects the expression of EMT regulators and cell motility. We finally monitored the effect of metformin on binimetinib-induced cell migration. Cell viability assay showed that combination index (CI) value at ED50 is 0.80, suggesting synergy for the combination of metformin with binimetinib. Our results also revealed that binimetinib increased the expression of EMT regulators such as integrin αV, fibronectin and slug, which correlate well with the enhanced cell migration in wound healing assay. Metformin, on the contrary, suppressed the expression of sparc, integrin αV, fibronectin and N-cadherin with the reduced cell motility. The combination treatment showed that metformin counteracts the binimetinib-induced increase of cell motility. Overall, these results suggest that metformin with binimetinib might be useful as a potential therapeutic adjuvant against cell survival and metastatic activity in melanoma patients.