• Title/Summary/Keyword: integration length

Search Result 229, Processing Time 0.022 seconds

Tree-dimensional FE Analysis of Acoustic Emission of Fiber Breakage using Explicit Time Integration Method (외연적 시간적분법을 이용한 복합재료 섬유 파단 시 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • The numerical simulation is performed for the acoustic emission and the wave propagation due to fiber breakage in single fiber composite plates by the finite element transient analysis. The acoustic emission and the following wave motions from a fiber breakage under a static loading is simulated to investigate the applicability of the explicit finite element method and the equivalent volume force model as a simulation tool of wave propagation and a modeling technique of an acoustic emission. For such a simple case of the damage event under static loading, various parameters affecting the wave motion are investigated for reliable simulations of the impact damage event. The high velocity and the small wave length of the acoustic emission require a refined analysis with dense distribution of the finite element and a small time step. In order to fulfill the requirement for capturing the exact wave propagation and to cover the 3-D simulation, we utilize the parallel FE transient analysis code and the parallel computing technology.

  • PDF

SNR Analysis for Practical Electro-Optical Camera System

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.633-636
    • /
    • 2005
  • An electro-optical camera system consists of many subsystems such as the optics, the detector, and the electronics and so on. They may create variations in the processed image that were not present original scene. The performance analysis of the electro-optical camera system is a mathematical construct that provides an optimum design through appropriate trade off analysis. The SNR(Signal to Noise Ratio) is one of the most important performance for the electro-optical camera system. The SNR analysis shown in this paper is performed based on the practical high resolution satellite camera design. For the purpose of the practical camera design, the analysis assumes that the defined radiance, which is calculated for the Korean peninsula, reached directly to the telescope entrance. In addition, the actual operation concept such as integration time and the normal operation altitude is assumed. This paper compares the SNR analysis results according to the various camera characteristics such as the optics, the detector, and the camera electronics. In detail, the optical characteristics can be split into the focal length, F#, transmittance, and so on. And the system responsivity, the quantum efficiency, the TDI stages, the quantization noise and the analogue noise can be used for the detector and the camera electronics characteristics. Finally this paper suggests the optimum design to apply the practical electro-optical system.

  • PDF

Integration of GIS-based RUSLE model and SPOT 5 Image to analyze the main source region of soil erosion

  • LEE Geun-Sang;PARK Jin-Hyeog;HWANG Eui-Ho;CHAE Hyo-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.357-360
    • /
    • 2005
  • Soil loss is widely recognized as a threat to farm livelihoods and ecosystem integrity worldwide. Soil loss prediction models can help address long-range land management planning under natural and agricultural conditions. Even though it is hard to find a model that considers all forms of erosion, some models were developed specifically to aid conservation planners in identifying areas where introducing soil conservation measures will have the most impact on reducing soil loss. Revised Universal Soil Loss Equation (RUSLE) computes the average annual erosion expected on hillslopes by multiplying several factors together: rainfall erosivity (R), soil erodibility (K), slope length and steepness (LS), cover management (C), and support practice (P). The value of these factors is determined from field and laboratory experiments. This study calculated soil erosion using GIS-based RUSLE model in Imha basin and examined soil erosion source area using SPOT 5 high-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area applying field survey method in common areas (dry field & orchard area) that are difficult to confirm soil erosion source area using satellite image.

  • PDF

Numerical Analysis of Added Resistances of a Large Container Ship in WavesNumerical Analysis of Added Resistances of a Large Container Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-101
    • /
    • 2017
  • In this study, the added resistances of the large container ship in head and oblique seas are evaluated using a time-domain Rankine panel method. The mean forces and moments are computed by the near-field method, namely, the integration of the second-order pressure directly on the ship surface. Furthermore, a weakly nonlinear approach in which the nonlinear restoring and Froude-Krylov forces on the exact wetted surface of a ship are included in order to examine the effects of amplitudes of waves on ship motions and added resistances. The computation results for various advance speeds and heading angles are validated by comparing with the experimental data, and the validation shows reasonable consistency. Nevertheless, there exist discrepancies between the numerical and experimental results, especially for a shorter wave length, a higher advance speed, and stern quartering seas. Therefore, the accuracies of the linear and weakly nonlinear methods in the evaluation of the mean drift forces and moments are also discussed considering the characteristics of the hull such as the small incline angle of the non-wall-sided stern and the fine geometry around the high-nose bulbous bow.

Highly Tunable Block Copolymer Self-assembly for Nanopatterning

  • Jeong, Yeon-Sik;Jeong, Jae-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.6.1-6.1
    • /
    • 2011
  • Nanoscale block copolymer (BCP) patterns have been pursued for applications in sub-30 nm nanolithography. BCP self-assembly processing is scalable and low cost, and is well-suited for integration with existing semiconductor fabrication techniques. However, one of the major technical challenges for BCP self-assembly is limited tunability in pattern geometry, dimension, and functionality. We suggest methods for extending the degree of tunability by choosing highly incompatible polymer blocks and utilizing solvent vapor treatment techniques. Siloxane BCPs have been developed as self-assembling resists due to many advantages such as high etch-selectivity, good etch-resistance, long-range ordering, and reduced line-edge roughness. The large incompatibility leads to extensive degree of pattern tunability since the effective volume fraction can be easily manipulated by solvent-based treatment techniques. Thus, control of the microdomain size, periodicity, and morphology is possible by changing the vapor pressure and the mixing ratio of selective solvents. This allows a range of different pattern geometry such as dots, lines and holes and critical dimension simply by changing the processing conditions of a given block copolymer without changing a polymer chain length. We demonstrate highly extensive tunability (critical dimension ~6~30 nm) of self-assembled patterns prepared by a siloxane BCP with extreme incompatibility.

  • PDF

Parametric Process Design of the Tension Levelling with an Elasto-plastic Finite Element Method (탄소성 유한요소법을 이용한 금속인장교정기의 공정변수 설계)

  • Park S. R.;Lee H. W.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.42-48
    • /
    • 2000
  • This paper is concerned with a simulation-based process design for the tension levelling of metallic strips based on the elasto-plastic finite element analysis with reduced integration and hourglass control. The tension levelling process is performed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat shape. The analysis deals with a method for calculating the quantitative level of the curl to investigate the roll arrangements and intermesh suitable to elimination of the curl. The analysis provides the information about the intermesh effect on the amount, the tension effect and distribution of the strain as well as the stress in order to determine the amount of elongation for correction of the irregular shape. The desired elongation is referred to determine the number of work rolls and the value of tension. Especially, the analysis investigates tile effect of the mesh size in the non-steady state finite element analysis on the amount and distribution of the strain.

  • PDF

Changes of Mooring Force due to Structural Modification of a Barge Ship (바지선 구조변경이 계류력 변화와 안정성에 미치는 영향)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Moon, Byung-Young;Jang, Tak-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.48-54
    • /
    • 2011
  • Structural modifications of a ship may cause a fatal accident such as sinking and wrecking of ship. Especially, barge ship can be easily reconstructed to load more bulk cargo. In this study, for a real accident case, change of mooring force due to structural modification was analyzed to evaluate accident risk. A two dimensional dynamic model for the barge ship was constructed to compute mooring forces with related to floating motion. The equation of motion was established in Matlab code and buoyancy was calculated by using direct integration of submerged volume. The results showed that wind force, current force, and mooring force after rebuilding was approximately 4.3 kN, 14 kN, 1,561 kN respectively. The maximum force of mooring force according to the length of mooring cable were 1,614 kN at 30 m of mooring cable. Thus, an arbitrary modification of ship lead instability and unreliable result so that illegal rebuilding of ship should be avoided.

Design and Fabrication of the MMIC frequency doubler for 29 ㎓ local Oscillators

  • Kim, Sung-Chan;Kim, Jin-Sung;Kim, Byeong-Ok;Shin, Dong-Hoon;Rhee, Jin-Koo;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1062-1065
    • /
    • 2002
  • We demonstrate the MMIC(monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 ㎓ local oscillator signals from 14.5 ㎓ input signals. These devices were designed and fabricated by using the MMIC integration process of 0.1 $\mu\textrm{m}$ gate-length PHEMTs (pseudomorphic high electron mobility transistors). The measurements showed S$\_$11/ of -9.2 dB at 14.5 ㎓, S/sub22/ of -18.6 dB at 29 ㎓ and a minimum conversion loss of 18.2 dB at 14.5 ㎓ with an input power of 6 dBm. The fundamental signal of 14.5㎓ was suppressed below 15.2 dBc compared with the second harmonic signal at the output port, and the isolation characteristics of the fundamental signal between the input and the output port were maintained above 30 dB in the frequency range of 10.5 ㎓ to 18.5 ㎓.

  • PDF

Numerical Simulation of High-Velocity Oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate (Yaw 를 가진 긴 관통자와 경사판재의 고속충돌 수치해석)

  • Yoo, Yo-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1426-1437
    • /
    • 2002
  • Using the Lagrangian explicit time-integration finite element code NET3D which can treat three-dimensional high-velocity impact problems, oblique penetration processes of long rod projectile with yaw against thin plate are simulated. Through the comparison of simulation result with experimental result and other code's computational result, the adaptability and accuracy of NET3D is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. Main research contents to be handled in this paper include the followings. First, the accuracy and efficiency estimation of NET3D code result obtained from the oblique penetration simulations of long rod projectile with yaw against thin plate. Second, the effect of increasing impact velocity. Third, the effect of initial yaw for the spaced-plate target. Residual velocities, residual lengths, angular velocities, and final deformed configurations obtained from the NET3D computations are compared with the experimental results and other code's computational results such as Eulerian code MESA and Lagrangian code EPIC. As a result of comparisons, it has been found that NET3D code is superior to EPIC code and MESA code in the prediction capability of residual velocity and residual length of penetrator. The key features obtained from the experiment can be successfully reproduced through NET3D simulations. Throughout the study, the applicability and accuracy of NET3D as a metallic armor system design tool is verified.

Induction of RNA-mediated Resistance to Papaya Ringspot Virus Type W

  • Krubphachaya, Pongrit;Juricek, Mila;Kertbundit, Sunee
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.404-411
    • /
    • 2007
  • Transformation of cantaloupes with the coat protein (cp) gene of papaya ringspot virus type W (PRSV-W), Thai isolate, was used to introduce virus resistance. Binary vectors containing either the full length coat protein coding region under control of the 35S CaMV promoter(pSA1175), or the inverted-repeat of a coat protein coding region (pSA1304), were constructed and used for Agrobacteriummediated transformation of cotyledonary explants of the cantaloupe cultivar Sun Lady. Four independent transgenic lines were obtained using pSA1304 and one using pSA1175. Integration of the PRSV-W cp gene into the genome of these transgenic lines was verified by PCR amplification, GUS assays and Southern blot hybridization. In vitro inoculation of these lines with PRSV-W revealed that whereas the line containing pSA1175 remained sensitive, the four lines containing pSA1304 were resistant. The presence of small RNA species, presumably siRNA, corresponding to regions of the viral cp gene in transgenic lines resistant to PRSV-W supports the involvement of post-transcriptional gene silencing in the establishment of resistance.