• Title/Summary/Keyword: integration cell

Search Result 369, Processing Time 0.027 seconds

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

A Study on the Design of the Source Driver and the Flexible Display with an Electrowetting Cell Structure (전기습윤셀 구조를 갖는 플렉서블 디스플레이와 소스 드라이버 설계에 관한 연구)

  • Kim, Hoon-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.149-156
    • /
    • 2012
  • The Fabric Electrode was proposed for the effective production of the display based on electrowetting in this paper and designed the source driver of flexible display which could be driven by the electrowetting cell. The electrowetting cell matrix was implemented on the substrate(PET) by imprinting. The driver fabric, wetting electrode fabric and conductive fabric was placed horizontally and vertically in the groove between cell matrix and the electrowetting cell matrix can be driven by the cross-point as electric connection. The integration density of driver module is decreased because using the R/2R DAC module per channel in the conventional method. The proposed method could utilize the effective production process and reduce the production price of a display panel. The source driver which consume lower power and can increase the integration density because of reducing the number of driver device per channel was designed and evaluate the driver operation by the simulation using the VHDL programming in this paper.

An Intergrated Framework for a Cellular Manufacturing System (셀 생산 시스템의 통합 구조)

  • 임춘우;이노성
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.219-228
    • /
    • 1997
  • The objective of this paper is to provide an alternative framework for the integration of process planning and scheduling in cellular manufacturing. The concept of an integrated cellular manufacturing system is defined and the system architecture is presented. In an integrated cellular manufacturing system, there are three modules : the process planning module, the manufacturing-cell design module, and the cell-scheduling module. For each module, the tasks and their activities are explained.

  • PDF

Scan Cell Grouping Algorithm for Low Power Design

  • Kim, In-Soo;Min, Hyoung-Bok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.130-134
    • /
    • 2008
  • The increasing size of very large scale integration (VLSI) circuits, high transistor density, and popularity of low-power circuit and system design are making the minimization of power dissipation an important issue in VLSI design. Test Power dissipation is exceedingly high in scan based environments wherein scan chain transitions during the shift of test data further reflect into significant levels of circuit switching unnecessarily. Scan chain or cell modification lead to reduced dissipations of power. The ETC algorithm of previous work has weak points. Taking all of this into account, we therefore propose a new algorithm. Its name is RE_ETC. The proposed modifications in the scan chain consist of Exclusive-OR gate insertion and scan cell reordering, leading to significant power reductions with absolutely no area or performance penalty whatsoever. Experimental results confirm the considerable reductions in scan chain transitions. We show that modified scan cell has the improvement of test efficiency and power dissipations.

NUMERICAL REQUIREMENTS FOR THE SIMULATION OF DETONATION CELL STRUCTURES (기체 상 데토네이션 셀 구조 해석을 위한 수치적 요구 조건)

  • Choi, Jeong-Yeol;Cho, Deok-Rae;Lee, Su-Han
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.177-181
    • /
    • 2007
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma}$ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

  • PDF

Electrochemical Oxidation of Hydrazine in Membraneless Fuel Cells

  • Durga, S.;Ponmani, K.;Kiruthika, S.;Muthukumaran, B.
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.73-81
    • /
    • 2014
  • This paper describes the continuous flow operation of membraneless sodium perborate fuel cell using acid/alkaline bipolar electrolyte. Here, hydrazine is used as a fuel and sodium perborate is used as an oxidant under Alkaline-acid media configuration. Sodium perborate affords hydrogen peroxide in aqueous medium. In our operation, the laminar flow based microfluidic membranleless fuel cell achieved a maximum power density of $27.2mW\;cm^{-2}$ when using alkaline hydrazine as the anolyte and acidic perborate as the catholyte at room temperature with a fuel mixture flow rate of $0.3mL\;min^{-1}$. The simple planar structured membraneless sodium perborate fuel cell enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable power applications.

Study on Operation Model for Open Architecture Flexible Manufacturing Cell Controller (개방형 유연제조셀 제어기를 위한 오퍼레이션 모델에 관한 연구)

  • Choi, K.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.92-98
    • /
    • 2000
  • Modern manufacturing systems should cope with the frequent changes in a product model and disturbances in manufacturing process. The control system of such systems must cover a constant adaptation and high flexibility. Holonic Flexible Manufacturing Cell(HFMC) is introduced to handle these issues more successfully. It is based on the concept of autonomous co-operating agent, called 'Holon', which is a building block of a manufacturing system for transforming, transporting, storing and/or validating information and physical objects. In this paper the basic structure of the HFMC is represented by using Unified Modeling Language and Open architecture cell controller is developed for effective integration components of a manufacturing system. Also a new control model, called MuLOM(Multi-Layered Operation Model), is suggested to represent the control behaviour for a holonic flexible manufacturing cell control system.

  • PDF

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Life Cycle Analysis of Stem Cell Technology Based on Diffusion Model : Focused on the Research Stage (확산 모형을 이용한 줄기 세포 기술의 수명 주기 분석 : 연구 단계를 중심으로)

  • Jang, In-young;Hong, Jungsik;Kim, Taegu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.488-498
    • /
    • 2015
  • Research on stem cells can be divided into three categories : pluripotent stem cell, adult stem cell, and induced pluripotent stem cell. Technology life cycle (TLC) on research stage is analyzed for the three stem cell categories based on diffusion model. Three diffusion models-logistic, Bass, and Bass model with integration constant (BMIC)-are applied to the number of articles related to each stem cell category in SCOPUS lists. Two different parameter estimation methods is used for each of logistic and Bass model. Results show that (1) the current year, 2015, lies in growth period at pluripotent stem cell and adult stem cell, and lies in growth period or maturity period at induced pluripotent stem cell. (2) Model fitness is the highest at BMIC model. (3) Imitation effect works best at the research area of induced pluripotent stem cell.

Study on Polymer Electrolyte Membrane Fuel Cell for UAV Applications (고분자 전해질막 연료전지의 무인항공기 탑재화 연구)

  • Kim, Jin-Cheol;Kim, Sung-Uk;Kim, Dong-Min;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.153-156
    • /
    • 2012
  • The optimization and integration of a fuel cell were performed to improve the performance and reliability of the fuel cell in this paper. To improve the performance of the PEMFC, current and voltage of the fuel cell were measured using an electrical load, and the results was compared and analyzed with the data of a commercial fuel cell. Based on the above results, a controller for a fuel cell UAV applications was designed, and the fuel cell control algorithm was developed to optimize the performance of the fuel cell UAV.

  • PDF