• Title/Summary/Keyword: integrated wall

Search Result 221, Processing Time 0.028 seconds

A simulation analysis of PV application method effect on electric power performance in an apartment wall facade (아파트 입면형 PV적용방식의 발전성능효과해석 연구)

  • Seo, Jung-Hun;Huh, Jung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • The objective of this study is to investigate the effect of building integrated PV application method on power generation. PV modules were integrated to a hypothetical apartment building facade in Seoul, Korea. Three different design options of PV panel mounted on exterior wall were developed for the analysis of cooling effects through ventilation. Numerical simulations using TRNSYS coupled with COMIS were executed to evaluate the design options. Their facade configurations are such as vertically installed PV panels with or without air gap between PV rear surface and exterior wall surface, and the tilted PV panels attached to the exterior wall at an angle of to the horizontal. Parametric results show that there is little difference regardless of the air 9ap width between PV rear surface and exterior wall surface. Special strategies which could effectively cool a PV panel to increase the electric power are required if we prefer to a vertical facade configuration in a building integrated PV installation. Consequently, it is expected that there is no reason for architect to install vertically PV panels with air gap unless active strategies are considered.

The Experimental Study on the Application of the Insulated Glass PV Module in the Curtain Wall (단열 복층유리 PV의 커튼 월 적용 가능성에 관한 실험적 연구)

  • Oh, Min-Seok;Kim, Hway-Suh
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.63-69
    • /
    • 2006
  • In order to positively cope with the international environmental regulations like UNFCCC (UN Framework Convention on Climate Change) and to overcome energy crisis Korea, who depends on import for more than 97% of required energy, needs to continuously proceed to development, spread and expansion of alternativeenergy and then, to cultivate the capacity to keep the balance of demand and supply of energy by itself. In this aspect, the technology of BIPV (Building Integrated Photovoltaic) is the field that the world is most interested in. However, at present, this technology is centered on increasing the efficiency of the module itself so it has lots of problems to be applied to buildings. Application of the integrated PV system in building external curtain wall can obtain much more generation of electric power than in roof-types whose area for installation is restricted, so it is excellent in terms of its possibility of application. Therefore, this paper intends to advance its practical use by proposing how to get integrated PV system which can be applied to building external curtain wall, and how to apply it.

Investigation of Water Leakage in Seosan A-Region Sea Wall using Integrated Analysis of Remote Sensing, Electrical Resistivity Survey, Electromagnetic Survey, and Borehole Survey (원격탐사, 전기탐사, 전자기탐사 및 시추공영상의 융합적 분석을 통한 서산지역 방조제 누수구역 판별)

  • Hong, Seong-In;Lee, Dongik;Baek, Gwanghyun;Yoo, Youngcheol;Lim, Kookmook;Yu, Jaehyung
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.105-121
    • /
    • 2013
  • This study introduces integrated approach on detection of a leakage in a sea wall based on remote sensing, electric resistivity survey, electromagnetic survey, and borehole survey for the Seosan A-Region sea wall. The satellite temperature distribution from Landsat ETM+ data identifies water leakage distribution and period by analyzing temperature mixing patterns between sea water and fresh water. Electric resistivity survey provides both horizontal and vertical anomaly distributions over the sea wall showing below average electric resistivity. Electromagnetic survey(electrical conductivity survey) reveals the potential possible leakage areas with minimal background impact by comparing electrical conductivity values between high and low tides. Borehole image processing system confirmed the locations of anomalies identified from the other survey methods and distributions of vertical fracture zones. The integrated approach identified 41.7% of the sea wall being the most probable area vulnerable to water leakage and effectively approximated both horizontal and vertical distribution of water leakage. The integrated analysis of remote sensing, electric resistivity survey, electromagnetic survey and borehole survey is considered to be an optimal method in identifying water leakage distribution, period, and extent of fractures knowledged from the boreholes.

Design of High-Efficient Divided Wall Distillation Columns for Propane and Butane Separation (프로판과 부탄 분리를 위한 고효율 분리벽형 증류탑 설계)

  • KIM, NAMGEUN;RYU, HYUNWOOK;KANG, SUNGOH;OH, MIN;LEE, CHANGHA
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.83-94
    • /
    • 2019
  • LPG is increasingly being used as a clean energy source due to the continuous strengthening of environmental regulations. In addition, the demand of propane which is the basic compound for petrochemicals is increasing for propylene production. In the study, a divided wall column was used as de-propanizer and de-butanizer, which is expected to save large amount of energy among the four conventional distillation columns used for processing LPG. The simulation results showed a decrease of energy duty with ESI by 30.30% using two divided wall columns. Furthermore, simulation case studies were carried out with respect to design and operation condition. The main column tray and withdrawal tray were determined from the design case studies while the internal liquid flow and vapor flow were decided from the operating case studies. Also, ESI of 1.06% could be achieved from the case studies. According to the results, the simulation method used showed that it is greatly helpful to the design and evaluate a highly efficient divided wall column.

The Impact of Internal heat gain on heating and Cooling Load in Curtain Wall Office Buildings (커튼월 사무소용 건물에서 실내발열이 냉난방 부하에 미치는 영향)

  • Kim, Jeong-Yoon;Yook, In-Soo;Nam, Hyun-Jin;Lee, Jin-Sung;Kim, Jae-Min;Cho, Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.925-930
    • /
    • 2008
  • As office automation appliances and communication equipments are adopted in office buildings, internal heat gains increase gradually. When making simulation model, internal heat gains are usually set up with standard values or ignored. Therefore, the impact of the internal heat gains has been ignored or not been focused although it is recognised as significant contributor to heating/cooling load of buildings. This study focused on the impact of internal heat gains on curtain wall buildings. the amount and schedules of heat internal gains profiles not only affect the profiles of heating/cooling loads, but also make impact on reducing the effectiveness of high performance glazing systems. It is important to identify internal heat gains profiles before considering the installation of high performance glazing systems.

  • PDF

Development of an Integrated Design Automation System for Retaining Wall Structures (옹벽 구조물을 위한 설계 자동화 통합 시스템 개발)

  • Byun, Yun-Joo;Kim, Hyun-Ky;Kim, Do;Lee, Min-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.294-299
    • /
    • 2008
  • Nowadays there are numerous factors to design the structure even for simple one, but many parts of the work are similar to the existing or repeated simply. In this case, design of the structure is unnecessarily needed lots of effort and time. To solve difficulties of design, an integrated design automation system for retaining wall structures that widely used is developed. The automation system consists of following items, 1) XML data structure between modules, 2) CAD visualization system to provide drawing sheets, 3) excel solution to provide structural design sheets and bills of quantity, 4) design logic to analysis and calculate behaviors of structure, and 5) GUI to represent data and results for the program.

  • PDF

Multitasking Façade: How to Combine BIPV with Passive Solar Mitigation Strategies in a High-Rise Curtain Wall System

  • Betancur, Juan
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • This paper outlines the processes and strategies studied and selected by the team during the design stages of the project for the incorporation of BIPV into the tower's façade. The goal was to create a system that helps reduce internal heating and cooling loads while collecting energy through photovoltaic panels located throughout the building. The process used to develop this façade system can be broken down into three stages. 1. Concept: BIPV as design catalyst for a high-rise building. 2. Optimization: Balancing BIPV and Human comfort. 3. Integration: Incorporating BIPV into a custom curtain wall design. The FKI Project clearly illustrates the evolution building enclosures from simple wall systems to high performance integrated architectural and engineering design solutions. This design process and execution of this project represent the design philosophy of our firm.

Performance Evaluation of BIPV Systems Applied in School Buildings (학교 건축에 대한 BIPV시스템의 성능 평가)

  • Park, Kyung-Eun;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.5
    • /
    • pp.14-23
    • /
    • 2004
  • Building-integrated photovoltaic(BIPV) systems can operate as a multi-functional building components, which generates electricity and serves as part of building envelope. It can be regarded as a new architectural elements, adding to the building's aesthetics. Besides of these benefits, the application of PV systems into school buildings tends to play an important role in energy education to students. In this context, this study aims to analyse the applicability of PV systems into school buildings. For an existing school building, four types of BIPV designs were developed; rooftops, wall-attached, wall-mounted with angle, and sunshading device. Based on energy modeling of those BIPV systems, the whole 60.1kWp rated PV installation is expected to yield about 65.6MWh of electricity, that is about 50% more than the annual electricity consumption of the school, 44MWh. It was also found that the applicability of the PV systems into the school building was very high, and the rooftop systems with the optimized angle was the most efficient in energy production, followed by sunshading, wall-mounted with angle and wall-attached. It concludes that school buildings have a reasonable potential to apply PV systems in the aspects of building elements and electricity production.

Evaluation of Physical Properties and Strength Interpretation for Lime-Soil Mixture on Barrier Tomb of Pyeongtaek Gungri Site in Joseon Dynasty (조선시대 평택 궁리유적 회곽묘의 물성평가 및 강도해석)

  • Lee, Chan Hee;Kang, San Ha
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • The lime-soil mixture on barrier (LSMB) tomb is a representative type of tomb from the Joseon Dynasty. It is an important reference for understanding the society and funeral culture of that time. The LSMB excavated at the Gungri site were classified with manufacturing type. The ultrasonic velocity and rebound hardness method were used to estimate the physical properties of the LSMB. The strength values on the tomb of layered wall were different depend on measuring method. The compressive strengths of the tomb with layered wall, which is calculated by ultrasonic velocity and rebound hardness ranged from 4.0 to 355 (mean 43.6) $kgf/cm^2$ and 18.8 to 538 (mean 245.2) $kgf/cm^2$ ranges. The damage to the tomb with integrated wall during excavation and removal of the corpse could be a reason for the difference in results obtained using ultrasonic velocity method. Compressive strengths of tombs with integrated wall, which is calculated by ultrasonic velocity and rebound hardness ranged from 5.7 to 793 (mean 281.6) $kgf/cm^2$ and 4.5 to 550.5 (mean 172.4) $kgf/cm^2$ values. Physical properties on the tombs of integrated wall had different in compressive strength value but showed similar tendency. Thus, evaluation of the physical properties has shown that measuring ultrasonic velocity and rebound hardness methods are more effective in the LSMB with integrated walls. Further, the strength values obtained through the rebound hardness method are more constant than those obtained through the ultrasonic method due to the small detection area required by the former.

LARGE EDDY SIMULATION OF FULLY TURBULENT WAVY CHANNEL FLOW USING RESIDUAL-BASED VARIATIONAL MULTI-SCALE METHOD (변분다중스케일법을 이용한 파형벽면이 있는 채널 난류 유동의 대와류모사)

  • Chang, Kyoung-Sik;Yoon, Bum-Sang;Lee, Joo-Sung
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2011
  • Turbulent flows with wavy wall are simulated using Residual-based Variational Multiscale Method (RB-VMS) which is proposed by Bazilves et al(2007) as new Large Eddy Simulation methodology. Incompressible Navier-Stokes equations are integrated using Isogeometric analysis which adopt the basis function as NURBS. The Reynolds number is 6760 based on the bulk velocity and averaged channel height. And the amplitude (${\alpha}/{\lambda}$) of wavy wall is 0.05. The computational domain is $2{\lambda}{\times}1.05{\lambda}{\times}{\lambda}$ in the streamwise, wall normal and spanwise direction. Mean quantities and turbulent statistics near wavy wall are compared with DNS results of Cherukat et al.(1998). The predicted results show good agreement with reference data.