• 제목/요약/키워드: integrated starter generator

검색결과 22건 처리시간 0.025초

Design Considerations for Low Voltage Claw Pole Type Integrated Starter Generator (ISG) Systems

  • Lee, Geun-Ho;Choi, Geo-Seung;Choi, Woong-Chul
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.527-532
    • /
    • 2011
  • Due to the need for improved fuel consumption and the trend towards increasing the electrical content in automobiles, integrated starter generator (ISG) systems are being considered by the automotive industry. In this paper, in order to change the conventional generator of a vehicle, a belt driven integrated starter generator is considered. The overall ISG system, the design considerations for the claw pole type AC electric machine and a low voltage very high current power stage implementation are discussed. Test data on the low voltage claw pole type machine is presented, and a large current voltage source DC/AC inverter suitable for low voltage integrated starter generator operation is also presented. A metal based PCB (Printed Circuit Board) power unit to attach the 4-parallel MOS-FETs is used to achieve extremely high current capability. Furthermore, issues related to the torque assistance during vehicle acceleration and the generation/regeneration characteristics are discussed. A prototype with the capability of up to 1000 A and 27 V is designed and built to validate the kilo-amp inverter.

Mechatronic V8 Engine Start Capabilities of an Automotive Starter/Generator System at the Super Cold Weather

  • Jang, Bong-Choon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.942-949
    • /
    • 2002
  • The use of a combined starter/generator integrated into the drive train of an automobile offers several possibilities for improvement of fuel economy The use of such a starter/generator system is made feasible by a switch from a 14 volts electrical system to a 42 volts system, however, the sizing of the components is not a trivial problem. This study combines a dynamic electromechanical model of the starter, battery and power electronics with the nonlinear mechanics of the piston/crankshaft system and a thermofluid model of the compression and expansion processes to investigate the cold start problem. The example involves the start of an eight cylinder engine at -25 degrees Celsius. This paper shows how the mechatronic V8 engine of an automotive starter/generator system for the startability works well.

하이브리드 차량용 ISG(Integrated Starter Generator)의 방열 설계를 위한 해석적 연구 (An Analysis Study for Thermal Design of ISG (Integrated Starter & Generator) for Hybrid Electric Vehicle)

  • 김대건;김성철
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.120-127
    • /
    • 2013
  • Hybrid electric vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. Electrification of automobiles is indispensable for entering into global market because of enhanced environment restriction. ISG (Integrated Starter & Generator) system is one of main electric parts and can improve fuel efficiency more than other components by using Idle Stop & Go function and regenerative braking system. However, if ISG motor and inverter work under the continuously high load condition, it will make them the decrease of performance and durability. So the ISG motor and inverter need to properly design the cooling system of them. In this study, we suggested the enhancement points by modifying the thermal design of ISG motor and then confirmed the improvement of the cooling performance.

장기체공 드론용 하이브리드 전기 추진시스템 성능 평가 (The Evaluation of an Electric Hybrid Power System for the High Endurance Drone)

  • 강병규;김근배
    • 한국군사과학기술학회지
    • /
    • 제25권5호
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

  • Lee, Choong-Sung;Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.148-154
    • /
    • 2015
  • 48-V ISG (Integrated Starter Generator) system has attracted attention to improve the fuel efficiency of ICE (Internal Combustion Engine) vehicle. One of the key components that significantly affects the cost and performance of the 48-V ISG system is the motor. In an ISG motor, the core and copper loss make the motor efficiency change because the motor has a broad driving operated range and more diverse driving modes compared with other motors. When designing an ISG motor, the selection of an electrical steel sheet is important, because the electrical steel sheet directly influences the efficiency of the motor. In this paper, the efficiency of the ISG motor, considering core loss and copper loss, is analyzed by testing different types of electrical steel sheets with respect to the driving speed range and mode. Using the results of a finite element method (FEM) analysis, a method to select the electrical steel sheet is proposed. This method considers the cost of the steel sheet and the efficiency according to driving mode frequency during the design process of the motor. A wound rotor synchronous machine (WRSM) was applied to the ISG motor in this study.

Motor Control of a Parallel Hybrid Electric Vehicle during Mode Change without an Integrated Starter Generator

  • Song, Minseok;Oh, Joseph;Choi, Seokhwan;Kim, Yeonho;Kim, Hyunsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.930-937
    • /
    • 2013
  • In this paper, a motor control algorithm for performing a mode change without an integrated starter generator (ISG) is suggested for the automatic transmission-based hybrid electric vehicle (HEV). Dynamic models of the HEV powertrains such as engine, motor, and mode clutch are derived for the transient state during the mode change, and the HEV performance simulator is developed. Using the HEV performance bench tester, the characteristics of the mode clutch torque are measured and the motor torque required for the mode clutch synchronization is determined. Based on the dynamic models and the mode clutch torque, a motor torque control algorithm is presented for mode changes, and motor control without the ISG is investigated and compared with the existing ISG control.

반응표면법을 이용한 ISG용 WFSM의 계자 유기 전압 및 토크 리플 저감 최적 설계 (Optimum Design for Reducing Field Induced Voltage and Torque ripple of WFSM for ISG using Response Surface Methodology)

  • 박진철;홍년한;황성우;채승희;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.806-807
    • /
    • 2015
  • Integrated Starter-Generator(ISG)는 스타터(Starter)와 발전기(Generator)를 하나의 장치로 통합한 형태의 자동차 부품 시스템이다. ISG는 높은 토크로 엔진을 돌려주어 차량의 원활한 Idle Stop & Go 가능하게 하고 차량 제동 시에는 발전기 역할을 하여 배터리를 충전한다. 본 논문에서는 ISG용 WFSM (Wound Field Synchronous Motor)의 초기모델에 반응표면법을 적용하여 계자 유기 전압 및 토크 리플 저감을 목표로 최적화 설계를 진행하였다.

  • PDF

크랭크축 직결형 42V기동/발전기(ISG)의 개발 (Development of crank shaft mounted ISG(Integrated Starter Generator))

  • 배본호;윤석영;설승기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.653-656
    • /
    • 2002
  • This paper presents the development of 15G(Integrate Starter Generator). The ISG is the crank shaft mount type and it is installed at tile flywheel. The wide operating range of ISG requires large constant power speed ratio, good overload performance and high efficiency. High saliency ratio permanent magnet motor is developed for the ISG applications and 500A MOSFET inverter is designed to derive the ISG. The characteristic of developed ISG is investigated using the special test-bed for the 42V PowerNet and the detailed results is presented

  • PDF

ISG 구동용 인버터의 열유동 해석에 관한 연구 (A Study on the Thermo-flow Analysis of ISG (Integrated Starter and Generator) Driving Inverter)

  • 김대건;김성철
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.145-150
    • /
    • 2013
  • Recently, many vehicles have applied electric parts for saving fuel consumption and reducing levels of environmental pollution. ISG (integrated starter & generator) is one of main electric parts and can improve fuel efficiency by using idle stop & go function and regenerative braking system. However, if ISG driving inverter works under the continuously high load condition, it will make the performance and durability of the inverter decreased with rising temperature. In this study, we carried out the analysis on the fluid flow and thermal characteristics of the inverter. As a result, we found the MOSFET of the air cooled inverter was increased up to $116^{\circ}C$ over the limit temperature. On the other hand, the liquid cooled type inverter's MOSFET was decreased by about $17^{\circ}C$ compared to that of the air cooled inverter. Therefore, we verified the feasibility of the liquid cooled type using the present cooling structure.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.