• Title/Summary/Keyword: integrated noise model

Search Result 136, Processing Time 0.022 seconds

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle (무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계)

  • Suhyeon Heo;Minju Kang;Jinwoo Choi;Jeonghong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Neurobiological Pathophysiology of Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애의 신경생물학적 병태생리)

  • Park, Hyung Bae;Joo, Yeol
    • Journal of Yeungnam Medical Science
    • /
    • v.17 no.2
    • /
    • pp.108-122
    • /
    • 2000
  • Background: Models of attention deficit hyperactivity disorder(ADHD) that have proposed a hypodopaminergic state resulting in hypofunction of the prefrontal circuitry have assumed a unitary dopamine system, which largely ignores the distinct functional differences between mesocortical dopamine system and nigrostriatal dopamine system. Purpose: The author's goal was to develop a pathophysiological model for ADHD with greater explanotory power than dopaminergic hypofunction hypothesis in prefronal circuitry. Material and Methods: Published clinical findings on ADHD were integrated with data from genetic, pharmacological, neuroimaging studies in human and animals. Results: Molecular genetic studies suggest that three genes may increase the susceptibility to ADHD. The three candidate genes associated with ADHD are each involved in dopaminergic function, and this consistent with the neurobiologic studies implicating catecholamines in the etiology of ADHD. Pharmacological data also provide compelling support for dopamine and noradrenergic hypothesis of ADHD. Neuroimaging studies lend substantial support for the hypothesis that right-sided abnormalities of prefrontal-basal ganglia circuit would be found in ADHD. Conclusions: The present hypothesis takes advantage of the major differences between the two pertinent dopamine systems. Mesocortical dopamine system, which largely lacks inhibitory autoreceptors, is ideally positioned to regulate cortical inputs, thus improving the signal-to-noise ratio for biologically valued signals. In this circuit, therapeutic doses of stimulants are hypothesized to increase postsynaptic dopamine effects and enhance executive functions. By contrast, symptoms of hyperactivity/impulsivity in ADHD are hypothesized to be associated with relative overactivity of nigrostriatal circuit. This nigrostriatal circuit is tightly regulated by inhibitory autoreceptoors as well as by long distance feedback from the cortex, and slow diffusion of therapeutic doses of stimulant via oral administration is hypothesized to produce a net inhibition of dopaminergic neurotransmission and improves hyperactivity.

  • PDF

Endpoint Detection Using Both By-product and Etchant Gas in Plasma Etching Process (플라즈마 식각공정 시 By-product와 Etchant gas를 이용한 식각 종료점 검출)

  • Kim, Dong-Il;Park, Young-Kook;Han, Seung-Soo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.541-547
    • /
    • 2015
  • In current semiconductor manufacturing, as the feature size of integrated circuit (IC) devices continuously shrinks, detecting endpoint in plasma etching process is more difficult than before. For endpoint detection, various kinds of sensors are installed in semiconductor manufacturing equipments, and sensor data are gathered with predefined sampling rate. Generally, detecting endpoint is performed using OES data of by-product. In this study, OES data of both by-product and etchant gas are used to improve reliability of endpoint detection. For the OES data pre-processing, a combination of Signal to Noise Ratio (SNR) and Principal Component Analysis (PCA),are used. Polynomial Regression and Expanded Hidden Markov model (eHMM) technique are applied to pre-processed OES data to detect endpoint.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

Performance Analysis of Noncoherent OOK UWB Transceiver for LR-WPAN (저속 WPAN용 비동기 OOK 방식 UWB 송수신기 성능 분석)

  • Ki Myoungoh;Choi Sungsoo;Oh Hui-Myoung;Kim Kwan-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1027-1034
    • /
    • 2005
  • IEEE802.15.4a, which is started to realize the PHY layer including high precision ranging/positioning and low data rate communication functions, requires a simple and low power consumable transceiver architecture. To satisfy this requirements, the simple noncoherent on-off keying (OOK) UWB transceiver with the parallel energy window banks (PEWB) giving high precision signal processing interface is proposed. The flexibility of the proposed system in multipath fading channel environments is acquired with the pulse and bit repetition method. To analyze the bit error rate (BER) performance of this proposed system, a noise model in receiver is derived with commonly used random variable distribution, chi-square. BER of $10^{-5}$ under the line-of-sight (LOS) residential channel is achieved with the integration time of 32 ns and signal to noise ratio (SNR) of 15.3 dB. For the non-line-of-sight (NLOS) outdoor channel, the integration time of 72 ns and SNR of 16.2 dB are needed. The integrated energy to total received energy (IRR) for the best BER performance is about $86\%$.

Deep Learning Algorithm and Prediction Model Associated with Data Transmission of User-Participating Wearable Devices (사용자 참여형 웨어러블 디바이스 데이터 전송 연계 및 딥러닝 대사증후군 예측 모델)

  • Lee, Hyunsik;Lee, Woongjae;Jeong, Taikyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.33-45
    • /
    • 2020
  • This paper aims to look at the perspective that the latest cutting-edge technologies are predicting individual diseases in the actual medical environment in a situation where various types of wearable devices are rapidly increasing and used in the healthcare domain. Through the process of collecting, processing, and transmitting data by merging clinical data, genetic data, and life log data through a user-participating wearable device, it presents the process of connecting the learning model and the feedback model in the environment of the Deep Neural Network. In the case of the actual field that has undergone clinical trial procedures of medical IT occurring in such a high-tech medical field, the effect of a specific gene caused by metabolic syndrome on the disease is measured, and clinical information and life log data are merged to process different heterogeneous data. That is, it proves the objective suitability and certainty of the deep neural network of heterogeneous data, and through this, the performance evaluation according to the noise in the actual deep learning environment is performed. In the case of the automatic encoder, we proved that the accuracy and predicted value varying per 1,000 EPOCH are linearly changed several times with the increasing value of the variable.

Tracking Control using Disturbance Observer and ZPETC on LonWorks/IP Virtual Device Network (LonWorks/IP 가상 디바이스 네트워크에서 외란관측기와 ZPETC를 이용한 추종제어)

  • Song, Ki-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • LonWorks over IP (LonWorks/IP) virtual device network (VDN) is an integrated form of LonWorks device network and IP data network. LonWorks/IP VDN can offer ubiquitous access to the information on the factory floor and make it possible for the predictive and preventive maintenance on the factory floor. Timely response is inevitable for predictive and preventive maintenance on the factory floor under the real-time distributed control. The network induced uncertain time delay deteriorates the performance and stability of the real-time distributed control system on LonWorks/IP virtual device network. Therefore, in order to guarantee the stability and to improve the performance of the networked distributed control system the time-varying uncertain time delay needs to be compensated for. In this paper, under the real-time distributed control on LonWorks/IP VDN with uncertain time delay, a control scheme based on disturbance observer and ZPETC(Zero Phase Error Tracking Controller) phase lag compensator is proposed and tested through computer simulation. The result of the proposed control is compared with that of internal model controller (IMC) based on Smith predictor and disturbance observer. It is shown that the proposed control scheme is disturbance and noise tolerant and can significantly improve the stability and the tracking performance of the periodic reference. Therefore, the proposed control scheme is well suited for the distributed servo control for predictive maintenance on LonWorks/IP-based virtual device network with time-varying delay.