• Title/Summary/Keyword: integral distribution

Search Result 430, Processing Time 0.029 seconds

A new quasi-3D HSDT for buckling and vibration of FG plate

  • Sekkal, Mohamed;Fahsi, Bouazza;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.737-749
    • /
    • 2017
  • A new quasi-3D higher shear deformation theory (quasi-3D HSDT) for functionally graded plates is proposed in this article. The theory considers both shear deformation and thickness-stretching influences by a hyperbolic distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower surfaces of the plate without using any shear correction factor. The highlight of the proposed theory is that it uses undetermined integral terms in displacement field and involves a smaller number of variables and governing equations than the conventional quasi-3D theories, but its solutions compare well with 3D and quasi-3D solutions. Equations of motion are obtained from the Hamilton principle. Analytical solutions for buckling and dynamic problems are deduced for simply supported plates. Numerical results are presented to prove the accuracy of the proposed theory.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates

  • Sidhoum, Imene Ait;Boutchicha, Djilali;Benyoucef, Samir;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • An original quasi-3D hyperbolic shear deformation theory for simply supported functionally graded plates is proposed in this work. The theory considers both shear deformation and thickness-stretching influences by a hyperbolic distribution of all displacements within the thickness, and respects the stress-free boundary conditions on the upper and lower surfaces of the plate without using any shear correction coefficient. By expressing the shear parts of the in-plane displacements with the integral term, the number of unknowns and equations of motion of the proposed theory is reduced to four as against five in the first shear deformation theory (FSDT) and common quasi-3D theories. Equations of motion are obtained from the Hamilton principle. Analytical solutions for dynamic problems are determined for simply supported plates. Numerical results are presented to check the accuracy of the proposed theory.

A Direction-Adaptive Watermarking Technique Based on 2DCT in the Buyer-Seller Watermarking Protocol (구매자-판매자 워터마킹 프로토콜상에서 DCT 기반의 방향성 적응 워터마킹)

  • Seong, Teak-Young;Kwon, Ki-Chang;Lee, Suk-Hwan;Kwon, Ki-Ryong;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.778-786
    • /
    • 2014
  • Buyer-seller watermarking protocol is one of the copyright protection techniques which combine a cryptographic protocol used in electronic commerce with a digital wetermarking scheme aiming at proving the ownership of multimedia contents and preventing the illegal reproduction and redistribution of digital contents. In this paper, it is proposed a new watermarking scheme in an encrypted domain in an image that is based on the block-DCT framework. In order to implement watermarking scheme in a public-key cryptosystem, it is divided that frequency coefficients exist as real number into integer and decimal layer. And the decimal layer is modified integer type through integral-processing. Also, for robustness and invisibility required in watermarking scheme, it is designed a direction-adaptive watermarking scheme based on locally edge-properties of each block in an image through analyzing distribution property of the frequency coefficients in a block using JND threshold.

Bit Error Probability of Noncoherent M-ary Orthogonal Modulation over Generalized Fading Channels

  • Simon, Marvin K.;Alouini, Mohamed-Slim
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.111-117
    • /
    • 1999
  • Using a method recently reported in the literature for analyzing the bit error probability (BEP) performance of noncoherent Mary orthogonal signals with square-law combining in the presence of independent and identically distributed Nakagami-m faded paths, we are able to reformulate this method so as to apply to a generalized fading channel in which the fading in each path need not be identically distributed nor even distributed ac-cording to the same family of distribution. The method leads to exact expressions for the BEP in the form of a finite-range integral whose integrand involves the moment generating function of the combined signal-to-noise ratio and which can therefore be readily evaluated numerically. The mathematical formalism is illustrated by applying the method to some selected numerical examples of interest showing the impact of the multipath intensity profile (MIP) as well as the fading correlation profile (FCP) on the BEP performance of M-ary orthogonal signal over Nakagami-m fading channels. Thses numerical results show that both MIP and FCP induce a non-negligible degradition in the BEP and have therefore to be taken into account for the accurate prediction of the performance of such systems.

  • PDF

Design of Daylighting Aperture Using Daylight Factor Method and its Evaluation by Distribution of Sky Component (Daylight Factor Method를 이용한 채광창의 설계와 주광율의 직접조도분에 의한 채광창의 평가)

  • Chee, Chol-Kon;Kwon, Young-Hye
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.210-213
    • /
    • 1988
  • A new and accurate expression to derive a window area is presented with a sequence for daylighting design using Daylight Factor Method process not in its classical point--by-point method but in lumen method as in artificial lighting design process to consider daylight in the early stage of a building design process. Accepting CIE Overcast Sky as the worst state with the lowest sky luminance, a user of a room can have more available daylight in his or her room. In the design process uniformity is checked to ensure reasonably even daylighting by comparing the depth of the room with the computed limiting depth. After these steps the shape and position of window is altered, of which the Sky Component of Daylight Factor under an Overcast Sky, SCo, is investigated and computed in Composite Simpson Multiple Integral so that a building designer or an analyst can choose the best shape and location that satisfies his/her taste and purpose of the room.

  • PDF

Numerical analysis of sheet cavitation on marine propellers, considering the effect of cross flow

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.546-558
    • /
    • 2013
  • The research performed in this paper was carried out to investigate the numerical analysis of the sheet cavitation on marine propeller. The method is boundary element method (BEM). Using the Green's theorem, the velocity potential is expressed as an integral equation on the surface of the propeller by hyperboloid-shaped elements. Employing the boundary conditions, the potential is determined via solving the resulting system of equations. For the case study, a DTMB4119 propeller is analyzed with and without cavitating conditions. The pressure distribution and hydrodynamic performance curves of the propellers as well as cavity thickness obtained by numerical method are calculated and compared by the experimental results. Specifically in this article cavitation changes are investigate in both the radial and chord direction. Thus, cross flow variation has been studied in the formation and growth of sheet cavitation. According to the data obtained it can be seen that there is a better agreement and less error between the numerical results gained from the present method and Fluent results than Hong Sun method. This confirms the accurate estimation of the detachment point and the cavity change in radial direction.

A Study on the tire structure-borne sound (타이어 구조 진동음에 관한 연구)

  • Chi, Chang-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.80-91
    • /
    • 1995
  • A theoretical models has been prepared which describes the noise generated by tire/road interaction for the tire structure-borne sound analysis. The model begin with a set of thin shell equations describing the motion of the belt of a radial ply tire, as drived by Bohm('mechanisms of the belted tire', Igeniur-Archiv, XXXV, 1966). Structural quantities required for these equations are derived from material properties of the tire. The rolling shape of a tire is computed from the steady-state limit of these equations. Vibrational response of the tire is treated by the full dependent shell equations. The force input at the tire/road interface is calculated on the basis of tread geometry and distribution of contact patch pressure. Radiation of noise is calculated by a simpson integral. Using the programs, the effect on noise of various tire design variations is computed and discussed. Trends which lead to quiet tire design are identified.

  • PDF

Stress Field and Deformation Energy of Inhomogeneous Preeipitates (비균질성 석출물 의 응력장 과 변형에너지 I)

  • 최병익;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.31-39
    • /
    • 1985
  • Using the tensor elastic Green functions an exact integral equation is formulated for two anisotropic precipitates embedded in an infinite anisotropic matrix; the matrix is subjected to an applied strain field or the precipitates undergo a stress-free transformation strain. This equation is reduced to an infinite system of algebraic equations by expanding the strains in Taylor series about the two points within each precipitate, and an approximation of the strain distributions within the two spherical precipitates is obtained by truncating the higher order terms. Since the present method requires no symmetry conditio between the two shperical precipitates, it is possible to obtain the strain distribution within the precipitates when the elastic constants and/or the sizes of the precipitates are different each other. The strains are expanded about arbitrary points, giving more accurate distributions of the strains than those presented elsewhere. The present method can be directly estended to the case of more than two spherical precipitates.

A analysis of Thin-Straight Monopole antenna on a conducting box Using the Wire-Grid Method (Wire-Grid 방법을 이용한 도체 상자에 부착된 선형 모노폴 안테나 해석)

  • 이승엽;김경재;이영훈;허선종;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1669-1676
    • /
    • 1993
  • In this paper, a thin-straight monopole antenna attached to a conducting box is analyzed using a moment method with the pocklington integral expression for the exact Green's function. A modeling of a conducting box is based on a Wire-Grid method for an efficient calculation procedure. A system of linear equation is obtained using the piecewise sinusoidal basis function. And a Junction basis function is enforcing to represent the physical current on the edge of the conducting box. Especially, the junction basis functions are overlapped for the current continuity preserving on the vertexes. Numerical results are obtained for the current distribution on the unified antenna/conducting box system, input impedance and radiation pattern. The results are compared with the known data.

  • PDF