• Title/Summary/Keyword: integers modulo n

Search Result 22, Processing Time 0.019 seconds

ON WEAKLY LOCAL RINGS

  • Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This article concerns a property of local rings and domains. A ring R is called weakly local if for every a ∈ R, a is regular or 1-a is regular, where a regular element means a non-zero-divisor. We study the structure of weakly local rings in relation to several kinds of factor rings and ring extensions that play roles in ring theory. We prove that the characteristic of a weakly local ring is either zero or a power of a prime number. It is also shown that the weakly local property can go up to polynomial (power series) rings and a kind of Abelian matrix rings.

Two Cubic Polynomials Selection for the Number Field Sieve (Number Field Sieve에서의 두 삼차 다항식 선택)

  • Jo, Gooc-Hwa;Koo, Nam-Hun;Kwon, Soon-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.614-620
    • /
    • 2011
  • RSA, the most commonly used public-key cryptosystem, is based on the difficulty of factoring very large integers. The fastest known factoring algorithm is the Number Field Sieve(NFS). NFS first chooses two polynomials having common root modulo N and consists of the following four major steps; 1. Polynomial Selection 2. Sieving 3. Matrix 4. Square Root, of which the most time consuming step is the Sieving step. However, in recent years, the importance of the Polynomial Selection step has been studied widely, because one can save a lot of time and memory in sieving and matrix step if one chooses optimal polynomial for NFS. One of the ideal ways of choosing sieving polynomial is to choose two polynomials with same degree. Montgomery proposed the method of selecting two (nonlinear) quadratic sieving polynomials. We proposed two cubic polynomials using 5-term geometric progression.