• Title/Summary/Keyword: integer programming

Search Result 810, Processing Time 0.026 seconds

An Optimization of the Planned Target Sequencing Problem Using Scheduling Method (스케줄링을 이용한 계획표적 사격순서의 최적화 방안)

  • Hwang, Won-Shik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • It is essential to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. During the artillery fire operations, minimizing the firing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to schedule the artillery fire on the multiple targets to decrease total fire operation time. To design a program to describe a real firing situation, we consider many possible circumstances of changes such as commander's intention, firing constraints, target priority, and contingency plan to make a fire plan in an artillery unit. In order to work out the target sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to a field artillery unit, it will improve the efficiency of the artillery fire force operations.

A Performance Evaluation of Circuit Minimization Algorithms for Mentorship Education of Informatics Gifted Secondary Students (중등 정보과학 영재 사사 교육을 위한 회로 최소화 알고리즘 성능 평가)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.12
    • /
    • pp.391-398
    • /
    • 2015
  • This paper devises a performance improvement and evaluation process of circuit minimization algorithms for mentorship education of distinguished informatics gifted secondary students. In the process, students learn that there are several alternative equivalent circuits for a target function and recognize the necessity for formalized circuit minimization methods. Firstly, they come at the concept of circuit minimization principle from Karnaugh Map which is a manual methodology. Secondly, they explore Quine-McCluskey algorithm which is a computational methodology. Quine-McCluskey algorithm's time complexity is high because it uses set operations. To improve the performance of Quine-McCluskey algorithm, we encourage them to adopt a bit-wise data structure instead of integer array for sets. They will eventually see that the performance achievement is about 36%. The ultimate goal of the process is to enlarge gifted students' interest and integrated knowledge about computer science encompassing electronic switches, logic gates, logic circuits, programming languages, data structures and algorithms.

Periodic Scheduling Problem on Parallel Machines (병렬설비를 위한 주기적 일정계획)

  • Joo, Un Gi
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.124-132
    • /
    • 2019
  • Scheduling problems can be classified into offline and online ones. This paper considers an online scheduling problem to minimize makespan on the identical parallel machines. For dynamically arrived jobs with their ready times, we show that the sequencing order according to the ERD (Earliest Ready Date) rule is optimal to minimize makespan. This paper suggests an algorithm by using the MIP(Mixed Integer Programming) formulation periodically to find a good periodic schedule and evaluates the required computational time and resulted makespan of the algorithm. The comparition with an offline scheduling shows our algorithm makes the schedule very fast and the makespan can be reduced as the period time reduction, so we can conclude that our algorithm is useful for scheduling the jobs under online environment even though the number of jobs and machines is large. We expect that the algorithm is invaluable one to find good schedules for the smart factory and online scheduler using the blockchain mechanism.

An Inventory Problem with Lead Time Proportional to Lot Size and Space Constraint (로트크기에 비례하는 리드타임과 공간 제약을 고려한 재고관리 정책)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.109-116
    • /
    • 2015
  • This paper is concerned with the single vendor single buyer integrated production inventory problem. To make this problem more practical, space restriction and lead time proportional to lot size are considered. Since the space for the inventory is limited in most practical inventory system, the space restriction for the inventory of a vendor and a buyer is considered. As product's quantity to be manufactured by the vendor is increased, the lead time for the order is usually increased. Therefore, lead time for the product is proportional to the order quantity by the buyer. Demand is assumed to be stochastic and the continuous review inventory policy is used by the buyer. If the buyer places an order, then the vendor will start to manufacture products and the products will be transferred to the buyer with equal shipments many times. The mathematical formulation with space restriction for the inventory of a vendor and a buyer is suggested in this paper. This problem is constrained nonlinear integer programming problem. Order quantity, reorder points for the buyer, and the number of shipments are required to be determined. A Lagrangian relaxation approach, a popular solution method for constrained problem, is developed to find lower bound of this problem. Since a Lagrangian relaxation approach cannot guarantee the feasible solution, the solution method based on the Lagrangian relaxation approach is proposed to provide with a good feasible solution. Total costs by the proposed method are pretty close to those by the Lagrangian relaxation approach. Sensitivity analysis for space restriction for the vendor and the buyer is done to figure out the relationships between parameters.

Robust Berth Planning under Uncertain Vessel Arrival (선박 도착시간의 불확실성에 강건한 선석 계획)

  • Park, Hyun-Ji;Park, Jin-Hyoung;Cho, Sung-Won
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.102-108
    • /
    • 2021
  • The purpose of this study is to develop a proactive methodology for disruption due to uncertainty in vessels' arrival time. As worldwide imports and exports increased rapidly, the importance of berth planning in container terminals has increased accordingly. Since the berth plan determines the capacity of the container terminal, it aims to maximize efficiency by minimizing the time and space gap between the vessels. In reality, several uncertainties disrupt the initial berth plan resulting in economic losses. In this study, we propose a robust berth plan for preventing disruption.

Study on the Facility Planning for Relief Logistics Relieving Damage from Natural Disaster (자연 재해로 인한 피해 경감을 위한 구호 물류 거점 계획에 대한 연구)

  • Han, Sumin;Jeong, Hanil;Park, Jinwoo
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.51-64
    • /
    • 2018
  • Recently, the magnitude and frequency of the natural disaster have been increased, the damage has become severer. The importance of disaster response system to relieve the damage has arised continuously. This study has tried to develop the algorithm to solve the facility location and size problem in emergency logistics. A facility in the emergency logistics has various roles in victim care, casualty treatment, relief resource management and relief vehicle assistance. Moreover, the location of facility in emergency logistics has to consider the safety and reliability. To gather these information, information management system with IoT sensors are suggested. The location problem in this study also covers various features to response various demands in disaster. To solve this problem, this study suggested MIP based algorithm. Scenario based simulation experiments are conducted to verify the performance suggested algorithm.

A Problem of Locating Electric Vehicle Charging Stations for Load Balancing (로드밸런싱을 위한 전기차 충전소 입지선정 문제)

  • Kwon, Oh-Seong;Yang, Woosuk;Kim, Hwa-Joong;Son, Dong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.9-21
    • /
    • 2018
  • In South Korea, Jeju Island has a role as a test bed for electric vehicles (EVs). All conventional cars on the island are supposed to be replaced with EVs by 2030. Accordingly, how to effectively set up EV charging stations (EVCSs) that can charge EVs is an urgent research issue. In this paper, we present a case study on planning the locations of EVCS for Jeju Island, South Korea. The objective is to determine where EVCSs to be installed so as to balance the load of EVCSs while satisfying demands. For a public service with EVCSs by some government or non-profit organization, load balancing between EVCS locations may be one of major measures to evaluate or publicize the associated service network. Nevertheless, this measure has not been receiving much attention in the related literature. Thus, we consider the measure as a constraint and an objective in a mixed integer programming model. The model also considers the maximum allowed distance that drivers would detour to recharge their EV instead of using the shortest path to their destination. To solve the problem effectively, we develop a heuristic algorithm. With the proposed heuristic algorithm, a variety of numerical analysis is conducted to identify effects of the maximum allowed detour distance and the tightness of budget for installing EVCSs. From the analysis, we discuss the effects and draw practical implications.

A Framework of Resource Provisioning and Customized Energy-Efficiency Optimization in Virtualized Small Cell Networks

  • Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5701-5722
    • /
    • 2018
  • The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.

Optimization Algorithm of Gantry Route Problem for Odd-type Surface Mount Device (이형 부품 표면실장기에 대한 겐트리 경로 문제의 최적 알고리즘)

  • Jeong, Jaewook;Tae, Hyunchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.

Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning

  • Sun, Si-yuan;Zheng, Ying;Zhou, Jun-hua;Weng, Jiu-xing;Wei, Yi-fei;Wang, Xiao-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2496-2512
    • /
    • 2021
  • The requirements for powerful computing capability, high capacity, low latency and low energy consumption of emerging services, pose severe challenges to the fifth-generation (5G) network. As a promising paradigm, mobile edge networks can provide services in proximity to users by deploying computing components and cache at the edge, which can effectively decrease service delay. However, the coexistence of heterogeneous services and the sharing of limited resources lead to the competition between various services for multiple resources. This paper considers two typical heterogeneous services: computing services and content delivery services, in order to properly configure resources, it is crucial to develop an effective offloading and caching strategies. Considering the high energy consumption of 5G base stations, this paper considers the hybrid energy supply model of traditional power grid and green energy. Therefore, it is necessary to design a reasonable association mechanism which can allocate more service load to base stations rich in green energy to improve the utilization of green energy. This paper formed the joint optimization problem of computing offloading, caching and resource allocation for heterogeneous services with the objective of minimizing the on-grid power consumption under the constraints of limited resources and QoS guarantee. Since the joint optimization problem is a mixed integer nonlinear programming problem that is impossible to solve, this paper uses deep reinforcement learning method to learn the optimal strategy through a lot of training. Extensive simulation experiments show that compared with other schemes, the proposed scheme can allocate resources to heterogeneous service according to the green energy distribution which can effectively reduce the traditional energy consumption.