• Title/Summary/Keyword: integer programming

Search Result 810, Processing Time 0.023 seconds

Optimization of Multi-reservoir Operation with a Hedging Rule: Case Study of the Han River Basin (Hedging Rule을 이용한 댐 연계 운영 최적화: 한강수계 사례연구)

  • Ryu, Gwan-Hyeong;Chung, Gun-Hui;Lee, Jung-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.643-657
    • /
    • 2009
  • The major reason to construct large dams is to store surplus water during rainy seasons and utilize it for water supply in dry seasons. Reservoir storage has to meet a pre-defined target to satisfy water demands and cope with a dry season when the availability of water resources are limited temporally as well as spatially. In this study, a Hedging rule that reduces total reservoir outflow as drought starts is applied to alleviate severe water shortages. Five stages for reducing outflow based on the current reservoir storage are proposed as the Hedging rule. The objective function is to minimize the total discrepancies between the target and actual reservoir storage, water supply and demand, and required minimum river discharge and actual river flow. Mixed Integer Linear Programming (MILP) is used to develop a multi-reservoir operation system with the Hedging rule. The developed system is applied for the Han River basin that includes four multi-purpose dams and one water supplying reservoir. One of the fours dams is primarily for power generation. Ten-day-based runoff from subbasins and water demand in 2003 and water supply plan to water users from the reservoirs are used from "Long Term Comprehensive Plan for Water Resources in Korea" and "Practical Handbook of Dam Operation in Korea", respectively. The model was optimized by GAMS/CPLEX which is LP/MIP solver using a branch-and-cut algorithm. As results, 99.99% of municipal demand, 99.91% of agricultural demand and 100.00% of minimum river discharge were satisfied and, at the same time, dam storage compared to the storage efficiency increased 10.04% which is a real operation data in 2003.

A development of an Optimization-Based Flight Scheduler and Its Simulation-Based Application to Real Airports (최적화 기법 기반의 항공기 스케줄러 개발 및 실제 공항의 수치적 모사)

  • Ryu, MinSeok;Song, Jae-Hoon;Choi, Seongim
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.681-688
    • /
    • 2013
  • Several problems caused by inevitable increment of airplane have been issued. The most effective solution to solve the issues is considered as establishing appropriate Air Traffic Management (ATM) that reduces aircraft's delay at an airport and intensify the airport's capacity. The purpose of this paper is to produce the optimum aircraft schedules that maximize the aircraft throughput by smooth air traffic flow near terminal area of an airport In this paper, mathematical formulations of the scheduling problem are firstly specified. Based on the mathematical modelling, an Optimization-Based Flight Scheduler that provides the optimum flight schedules for arriving aircraft is developed by introducing the Mixed Integer Linear Programming(MILP) and the Genetic Algorithms(GA). With this scheduler, we calculated the optimum schedules to compare to real schedule data from an Incheon Airport. As a result, it is validated that aircraft throughput produced by the optimum schedule is much better than that of the schedule from the Incheon airport. The optimization-based flight scheduler is expected to deal with problems due to the aircraft saturation in near future.

Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market (냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.312-321
    • /
    • 2018
  • The Korean DR market proposes suppression of peak demand under reliability crisis caused a natural disaster or unexpected power plant accidents as well as saving power plant construction costs and expanding amount of reserve as utility's perspective. End-user is notified a DR event signal DR execution before one hour, and executes DR based on requested amount of load reduction. This paper proposes a DR energy management algorithm that can be scheduled the optimal operations of chiller system and ESS in the next day considering the TOU tariff and DR scheme. In this DR algorithm is divided into two scheduling's; day-ahead operation scheduling with temperature forecasting error and operation rescheduling on DR operation. In day-ahead operation scheduling, the operations of DR resources are scheduled based on the finite number of ambient temperature scenarios, which have been generated based on the historical ambient temperature data. As well as, the uncertainties in DR event including requested amount of load reduction and specified DR duration are also considered as scenarios. Also, operation rescheduling on DR operation day is proposed to ensure thermal comfort and the benefit of a COB owner. The proposed method minimizes the expected energy cost by a mixed integer linear programming (MILP).

A Study on Improvement of Run-Time in KS-SIGNAL, Traffic Signal Optimization Model for Coordinated Arterials (간선도로 연동화 신호최적화 모형 KS-SIGNAL의 수행속도 향상을 위한 연구)

  • 박찬호;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.7-18
    • /
    • 2000
  • KS-SIGNAL, a traffic signal optimization model for coordinated arterials, is an optimization model using the mixed integer linear Programming that minimizes total delay on arterials by optimizing left-turn Phase sequences. However, the Previous version of KS-SIGNAL had a difficulty in reducing computation speed because the related variables and constraints multiply rapidly in accordance with the increase of intersections. This study is designed to propose a new model, improving optimizing computation speed in KS-SIGMAl, and evaluate it. This Paper Puts forth three kinds of methodological approaches as to achieve the above goals. At the first step to reduce run-time in the proposed model objective function and a few constraints are Partially modified, which replaces variable in related to queue clearance time with constant, by using thru-movements at upstream intersection and the length of red time at downstream intersection. The result shows that the run-time can be reduced up to 70% at this step. The second step to load the library in LINDO for Windows, in order to solve mixed integer linear programming. The result suggests that run-time can be reduced obviously up to 99% of the first step result. The third step is to add constraints in related to left-turn Phase sequences. The proposed methodological approach, not optimizing all kinds of left-turn sequences, is more reasonable than that of previous model , only in the view of reducing run-tim. In conclusion, run-time could be reduced up to 30% compared with the second results. This Proposed model was tested by several optimization scenarios. The results in this study reveals that signal timing plan in KS-SIGNAL is closer to PASSER-II (bandwidth maximizing model) rather than to TRANSYT-7F(delay minimizing model).

  • PDF

The Research of Layout Optimization for LNG Liquefaction Plant to Save the Capital Expenditures (LNG 액화 플랜트 배치 최적화를 통한 투자비 절감에 관한 연구)

  • Yang, Jin Seok;Lee, Chang Jun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.51-57
    • /
    • 2019
  • A plant layout problem has a large impact on the overall construction cost of a plant. When determining a plant layout, various constraints associating with safety, environment, sufficient maintenance area, passages for workers, etc have to be considered together. In general plant layout problems, the main goal is to minimize the length of piping connecting equipments as satisfying various constraints. Since the process may suffer from the heat and friction loss, the piping length between equipments should be shorter. This problem can be represented by the mathematical formulation and the optimal solutions can be investigated by an optimization solver. General researches have overlooked many constraints such as maintenance spaces and safety distances between equipments. And, previous researches have tested benchmark processes. What the lack of general researches is that there is no realistic comparison. In this study, the plant layout of a real industrial C3MR (Propane precooling Mixed Refrigerant) process is studied. A MILP (Mixed Integer Linear Programming) including various constraints is developed. To avoid the violation of constraints, penalty functions are introduced. However, conventional optimization solvers handling the derivatives of an objective functions can not solve this problem due to the complexities of equations. Therefore, the PSO (Particle Swarm Optimization), which investigate an optimal solutions without differential equations, is selected to solve this problem. The results show that a proposed method contributes to saving the capital expenditures.

Analysis and comparison of the water supply adjustment guide and a hedging rule of reservoir operation derived from mixed-integer programming for water supply operation of a multi-purpose reservoir (다목적댐의 가뭄 대비 용수공급 조정기준과 혼합 정수계획법에 의한 용수 감량 공급 기준의 비교 및 분석)

  • Jin, Youngkyu;Jeong, Taekmun;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.443-452
    • /
    • 2021
  • The authors obtained the discrete hedging rule for a reservoir's water supply operation by applying mixed-integer programming to save more water by earlier rationing of water supply for a drought period. The 'water supply adjustment guide' is the current operational method applied to the multipurpose reservoirs, and it was derived by a simulation method. Applying the two rules to the Hapcheon multipurpose dam's reservoir simulations with the inflow record from 2003 to 2018, the water supply deficit occurred for the long drought from 2015 to 2018. Especially, the no water supply or intermittent water supply persisted for the second half of 2017. The water supply adjustment guide had the 'normal water supply recovery threshold on storage,' which resulted in the water supply being unavailable in July 2017; then, the water supply suspension occurred until January 2018, when the reservoir storage was greater than the normal water supply recovery threshold. Despite the storage increasing due to the inflow of water into the reservoir, the suspension occurrence needs to be improved in practice. The current water supply adjustment guide and the discrete hedging rule for a reservoir's water supply operation are useful and realistic as the reservoir operation guide, which shows the concept of reducing water supply during the drought phase as scientific figures. However, to improve the reservoir simulation results, which do not provide any or intermittent water for several months, it is necessary to increase the current water supply reduction for drought phases.

Routing and Wavelength Assignment in Optical WDM Networks with Maximum Quantity of Edge Disjoint Paths (WDM방식을 기반으로 한 광 네트워크상에서 최대 EDPs(Edge Disjoint Paths)을 이용한 라우팅 및 파장할당 알고리즘)

  • Choo, Hyun-Seung;Chung, Sung-Taek;Lee, Sung-Chang
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.677-682
    • /
    • 2004
  • In the present paper routing and wavelength assignment (RWA) in optical WDM networks is considered. Previous techniques based on the combination of integer linear programming and graph coloring are complex and require extensive use of heuristics. Such methods are mostly slow and sometimes impossible to get results due to infeasibility. An alternative approach applied to RWA employs on the greedy algorithm for obtaining the maximum edge disjoint paths. Even though this approach is fast, it produces a solution for any connection request, which is very far from the optimal utilization of wavelengths. We propose a novel algorithm, which is based on the maximum flow technique to obtain the maximum quantity of edge, disjoint paths. Here we compare the offered method with previous maximum edge disjoint paths algorithms ap plied to the RWA.

A Study on the Mathematical Programming Approach to the Subway Routing Problem (지하철 차량운용 문제에 대한 수리적 해법에 관한 연구)

  • Kim, Kyung-Min;Hong, Soon-Heum
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1731-1737
    • /
    • 2007
  • This paper considers subway routing problem. Given a schedule of train to be routed by a railway stock, the routing problem determines a sequence of trains while satisfying turnaround time and maintenance restrictions. Generally, the solution of routing problem is generated from set partition formulation solved by column generation method, a typical integer programming approach for train-set. However, we find the characteristics of metropolitan subway which has a simple rail network, a few end stations and 13 departure-arrival patterns. We reflect a turn-around constraint due to spatial limitations has no existence in conventional railroad. Our objective is to minimize the number of daily train-sets. In this paper, we develop two basic techniques that solve the subway routing problem in a reasonable time. In first stage, we formulate the routing problem as a Min-cost-flow problem. Then, in the second stage, we attempt to normalize the distance covered to each routes and reduce the travel distance using our heuristic approach. Applied to the current daily timetable, we could find the subway routings, which is an approximately 14% improvement on the number of train-sets reducing 15% of maximum traveling distance and 8% of the standard deviation.

  • PDF

Joint wireless and computational resource allocation for ultra-dense mobile-edge computing networks

  • Liu, Junyi;Huang, Hongbing;Zhong, Yijun;He, Jiale;Huang, Tiancong;Xiao, Qian;Jiang, Weiheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3134-3155
    • /
    • 2020
  • In this paper, we study the joint radio and computational resource allocation in the ultra-dense mobile-edge computing networks. In which, the scenario which including both computation offloading and communication service is discussed. That is, some mobile users ask for computation offloading, while the others ask for communication with the minimum communication rate requirements. We formulate the problem as a joint channel assignment, power control and computational resource allocation to minimize the offloading cost of computing offloading, with the precondition that the transmission rate of communication nodes are satisfied. Since the formulated problem is a mixed-integer nonlinear programming (MINLP), which is NP-hard. By leveraging the particular mathematical structure of the problem, i.e., the computational resource allocation variable is independent with other variables in the objective function and constraints, and then the original problem is decomposed into a computational resource allocation subproblem and a joint channel assignment and power allocation subproblem. Since the former is a convex programming, the KKT (Karush-Kuhn-Tucker) conditions can be used to find the closed optimal solution. For the latter, which is still NP-hard, is further decomposed into two subproblems, i.e., the power allocation and the channel assignment, to optimize alternatively. Finally, two heuristic algorithms are proposed, i.e., the Co-channel Equal Power allocation algorithm (CEP) and the Enhanced CEP (ECEP) algorithm to obtain the suboptimal solutions. Numerical results are presented at last to verify the performance of the proposed algorithms.

Efficient Virtual Machine Resource Management for Media Cloud Computing

  • Hassan, Mohammad Mehedi;Song, Biao;Almogren, Ahmad;Hossain, M. Shamim;Alamri, Atif;Alnuem, Mohammed;Monowar, Muhammad Mostafa;Hossain, M. Anwar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1567-1587
    • /
    • 2014
  • Virtual Machine (VM) resource management is crucial to satisfy the Quality of Service (QoS) demands of various multimedia services in a media cloud platform. To this end, this paper presents a VM resource allocation model that dynamically and optimally utilizes VM resources to satisfy QoS requirements of media-rich cloud services or applications. It additionally maintains high system utilization by avoiding the over-provisioning of VM resources to services or applications. The objective is to 1) minimize the number of physical machines for cost reduction and energy saving; 2) control the processing delay of media services to improve response time; and 3) achieve load balancing or overall utilization of physical resources. The proposed VM allocation is mapped into the multidimensional bin-packing problem, which is NP-complete. To solve this problem, we have designed a Mixed Integer Linear Programming (MILP) model, as well as heuristics for quantitatively optimizing the VM allocation. The simulation results show that our scheme outperforms the existing VM allocation schemes in a media cloud environment, in terms of cost reduction, response time reduction and QoS guarantee.