• Title/Summary/Keyword: intake manifold

Search Result 144, Processing Time 0.02 seconds

A Study for Failure Examples of Emission Gas Recirculation and Air Control and Catalyzed Particulate Filter System in Diesel Engine Vehicle (디젤엔진 자동차의 EGR 및 공기 제어와 CPF 장치에 관련된 고장사례 고찰)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Lee, Young Suk;Youm, Kwang Wook;You, Chang Bae;Kim, Sung Mo;Lim, Ha Young;Ahn, Ho Cheol;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.78-83
    • /
    • 2018
  • The purpose of this paper is to study for failure examples of emission gas recirculation and air control and catalyzed particulate filter system in diesel engine vehicle. The first example, the researcher found the fact that the much engine oil came into the intake manifold causing diaphragm damage of EGR valve. The engine oil entered into combustion chamber of engine so that a car emit the polluted exhaust gas when driving. The second example, the researcher certified the sticking phenomenon of carbon and foreign substance with the throttle flap so that the exhaust fumes discharged exhaust port. The third example, the regeneration function don't activated to not detect the temperature of exhaust gas because of damage in the sensor. Thus, the researcher must meticulously manage his car not in order to take place the problem of environmental pollution.

A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles (비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구)

  • Cho, Gyu-Baek;Kim, Hong-Suk;Kang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • To meet the requirements of the Tier 4 interim regulations for off-road vehicles, emissions of particulate matter (PM) and nitrogen oxides (NOx) must be reduced by 95% and 30%, respectively, compared to current regulations. In this research, both the DPF and HPL EGR systems were investigated, with the aim of decreasing the PM and NOx emissions of a 56-kW off-road vehicle. The results of the experiments show that the DOC-DPF system is very useful for reducing PM emissions. It is also found that the back pressure is acceptable, and the rate of power loss is less than 5%. By applying the HPL EGR system to the diesel engine, the NOx emissions under low- and middle-load conditions are reduced effectively because of the high differential pressure between the turbocharger inlet and the intake manifold. The NOx emissions can be decreased by increasing the EGR rate, but total hydrocarbon (THC) emission increases because of the increased fuel consumption needed to compensate for the power loss caused by EGR and DPF.

Fuel Concentration Measurements by Laser Rayleigh Scattering (레이저 Rayleigh 산란을 이용한 연료농도 계측시 잡음원인과 대책)

  • Kwon, Soon-Tae;Lee, Jae-Won;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2008
  • In this study, a system to measure continuously the fuel concentration in a steady flow rig on the basis of Rayleigh scattering is presented. The system can be employed to measure both the temporal and the spatial distribution. Also, it is possible to calibrate the system for the measurement of accurate absolute concentration. Firstly, the system was tested at a calibration chamber for the determination of scattering cross section from propane, butane, acetylene, Freon-12 and Genetron 143a. After this, the system was adapted to a steady flow rig to measure the temporal and spatial fuel concentration. The rig is composed of cylinder head, intake manifold, injector, and transparent cylinder which can simulate internal combustion engine. To cope with the interference of Mie scattering, which is main obstacle of the measuring concentration with Rayleigh scattering, a hardware filter was installed for reducing the number density of particles. Furthermore a software filter was developed, which is based on the rise time and the time constant of the photomultiplier-amplifier system. In addition, background noisy was reduced by adjusting the optical array and applying the pin hall and beam trap. The results show that LRS can provide useful information about concentration field and the software filter is very effective method to remove Mie interference.

A Numerical Study on Performance of a Heavy-Duty Diesel engine for Power Generation under Natural Gas-Diesel Dual Fuel Operation (발전용 대형 디젤 엔진의 천연가스-디젤혼소 운전 특성에 대한 수치해석 연구)

  • Cho, Jungkeun;Park, Sangjun;Song, Soonho;Hur, Kwang-Beom
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • This study is an 1-D numerical study prior to modification of diesel engine for power plants to natural gas/diesel dual fuel engine using GT-Power with 1.5MW diesel engine for power generation. Natural gas injector was installed to intake manifold for dual fuel engine model. Effects on engine performance and characteristics were investigated when dual fuel is used in unmodified diesel engine. The analysis was done under 5 conditions from 0% to 40% of mixing rate on 720RPM engine speed. As a result of research, the engine performance was decreased as increasing ratio of natural gas. Engine brake power was decreased by 18.4% under 40% mixing rate condition. To clarify the reason, effects of injection timing and period were evaluated with DOE method. Considering this result, optimization was done for these parameters. Also, comparison between performances of dual fueled engine and diesel engine was made after optimizing the timing of injection by DOE method. As a result, engine brake power was decreased by 8.55% under mixing rate 40% condition showing 12.5% improvement.