• Title/Summary/Keyword: intake and exhaust system

Search Result 182, Processing Time 0.026 seconds

The Experimental Investigations of Recirculated Exhaust Gas on Exhaust Emissions in a Diesel Engine

  • Kim, Hyeong-Nam;Bae, Myeong-Wan;Park, Jae-Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1588-1598
    • /
    • 2001
  • The effects of recirculated exhaust gas on the characteristics of NOx and soot emissions under a wide range of engine loads were experimentally investigated by using a four-cycle, four-cylinder, sw irl chamber type, water-cooled diesel engine operating at three engine speeds. The purpose of this study was to develop the EGR-control system for reducing NOx and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system was specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The experiments were performed at the fixed fuel injection timing of 4$^{\circ}$ ATDC regardless of experimental conditions. It was found that soot emissions in exhaust gases were reduced by 20 to 70% when the scrubber was applied in the range of the experimental conditions, and that NOx emissions decreased markedly, especially at higher loads, while soot emissions increased owing to the decrease in intake and exhaust oxygen concentrations, and the increase in equivalence ratio as the EGR rate is elevated.

  • PDF

A Study on the Effect of Recirculated Exhaust Gas with Scrubber EGR System upon Exhaust Emissions in Diesel Engines (디젤기관의 배기 배출물에 미치는 스크러버형 EGR 시스템 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-Whan;Ha, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1247-1254
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of $NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The simultaneous control of $NO_x$ and soot emissions in diesel engines is targeted in this study. The EGR system is used to reduce $NO_x$ emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector has 144 nozzles in 1.0 mm diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate, and the exhaust oxygen concentration measured are used to analyse and discuss the influences of EGR rate on $NO_x$ and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions are decreased and soot emissions are increased owing to the drop of intake oxygen concentration and exhaust oxygen concentration, and the rise of equivalence ratio as the EGR rate rises.

A study on the pressure variation in the intake and exhaust pipes of four cycle four cylinder S.I. engine (4 사이클 4기통 전기점화기관의 흡배기관내의 압력변동에 관한 연구)

  • 이석재;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-91
    • /
    • 1988
  • The purpose of this study is to investigate the flow through the intake and exhaust system of a spark ignition engine. The flow was assumed to be one-dimensional, compressible and unsteady, and carburetor, muffler, valve and junction are modelled as boundary conditions according to their flow characteristics. In the experiment, four cylinder gasoline engine is used and the pressures in the intake and exhaust pipes and in the cylinder are measured and compared with the results of numerical analysis. In consequence of the comparison, four periods of pressure wave in a cycle are observed in both case of experiment and prediction. In case of exhaust pipe, the results obtained from the experiment are in accord with that from calculation. The results of the intake system show some differences with each other due to the complication in shape, but the periods of both case concur well.

  • PDF

A Development of Sound Quality Index of an Intake and Exhaust System for High Quality Improvement of Luxury Vehicles (차량 고급감 향상을 위한 흡배기계 음질지수 개발)

  • Lee, Jong-Kyu;Cho, Teock-Hyeong;Seo, Dae-Won;Lim, Yun-Soo;Won, Kwang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.234-243
    • /
    • 2012
  • In this paper, a sound quality indices for the evaluation of vehicle intake and exhaust noise were developed through a correlation analysis of objective measurement data and subjective evaluation data. At first, intake and exhaust orifice noise were measured at the wide-open throttle sweep condition. And then, acoustic transfer function between intake orifice noise and interior noise at the steady state condition was measured. Also, acoustic transfer function for exhaust system was measured as the same method. Simultaneously, subjective evaluation was carried out by the paired comparison and semantic differential method by 27 engineers. Next, the correlation analysis between the psycho-acoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding sound quality index for the intake and exhaust noise was obtained from the multiple factor regression method. At last, the effectiveness of the proposed index was investigated.

Pressure Predictions in Exhaust Pipe of a Single Cylinder Gasoline Engine (단기통 가솔린 기관의 배기단의 압력 예측)

  • Choi, S.C.;Lee, H.J.;Kim, S.H.;Koh, D.K.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold. To obtain the boundary conditions for a numerical analysis, one dimensional and non-steady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the engine revolution to calculate the pulsating flow which the intake and exhaust valves arc working. The comparison of exhaust pressure in case of numerical results is quite matched with in case of experimental results. When engine revaluation is increased, the pressure amplitude showed a high value, but the pressure frequency was decreased.

  • PDF

The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine (흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향)

  • Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

A Study on the Power and Smoke Characteristics for the Intake System Improvement using Air Conditioning System in a Diesel Vehicle (디젤 자동차의 에어컨 사용시 흡기계통 개선에 따른 출력 및 매연 특성에 관한 연구)

  • Youn, Y.C.;Kwon, K.R.;Pyeon, H.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.11-15
    • /
    • 2011
  • This study investigated the symptoms of the a reduction in output while driving on the road, or increasing of fumer out exhaust gas on inclined road while working air-conditioner in summer. Notice how the experiment in 2010, the Ministry of Environment(Chapter No. 2010-46), and how the vehicle emissions inspection was carried out. 2500cc Diesel cars used in the study were used and compare to output of engine, exhaust gas, inhalation temperature measurement Inhalation of cold air has not been supplied to all agencies when comparing the results when cold air intake temperature of the supply air-conditioning switch range control from 1 to 4, the temperature drops $98^{\circ}C$ to $78^{\circ}C$. At the momentum of switch level 4, output from 63ps to 66ps after the connection has increased 9.6 percent, the highest concentration of exhaust emissions were reduced by 42.8%. This research can contribute in part to the reduction of exhaust directly supply into the cooling air intake line, doing the output of diesel cars in the summer. In addition, construction equipment and machinery that are currently being used excluding the engine's intercooler cooling of the supply line via a separate output in the summer and help reduce exhaust emissions is expected.

A Study on Air-Conditioning System for Excavator using Forced Exhaust (강제배기를 이용한 굴삭기 공기조화 시스템에 관한 연구)

  • Hwang, J.H.;Jeong, C.S.;Ko, J.H.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • The excavator is used in a variety of construction environments. There are many kinds of risk like falling rocks or harmful dust. The excavator cabin protects the operator not only from these harmful environments but also provides a comfortable working environment. By the way, the excavator cabin consumes a lot of energy for cabin air conditioner. For this reason, the research is required to reduce energy consumption. This study suggests the air conditioning system for excavator using forced exhaust. First, the forced exhaust system simulated by AMESim tool and surveyed the applicability. Using AMESim simulation, it was investigated the effect of cabin inside temperature by intake flow rate and intake air temperature. The experiment executed using the 1.5 ton excavator and field tested according to the intake flow rate. Finally, verified the applicability on the air conditioning system for excavator using forced exhaust.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

Improvement of algorithm for the calculation of gas flowin intake and exhaust system on diesel engines (내연기관의 흡.배기계내 가스유동해석용 알고리즘의 고정도화)

  • K.Kanamaru
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2001
  • Many simulation programs included intake and exhaust system on diesel engines have been developed. However, existing programs using 1-D numerical analytic methods in manifold gas flow by the method of characteristics have some problems to be solved.. Especially to optimzing the engine system, a simulation program which had more efficiency and accuracy is required newly. In this paper, a improved method for application limit and efficiency as well as mass conservation named constant mesh explicit method of characteristic was described. And some calculation results by this method were compared with experimental results and orther calculation results. Also, it was confirmed that the results by the proposed method were more agreed with experimental results.

  • PDF