• 제목/요약/키워드: intake and exhaust system

검색결과 182건 처리시간 0.026초

가변 헬름홀츠 공진기가 다기통 디젤기관의 체적효율에 미치는 영향 (The Effects of Tunable Helmholtz Resonators on the Volumetric Efficiency in a Multi-cylinder Diesel Engine)

  • 강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.26-32
    • /
    • 2005
  • The volumetric efficiency is significantly affected by the behavior of pressure wave in induction system and exhaust pipe. By the motion of the piston, there exist pressure fluctuation in induction system which produce waves. Waves are propagated along a pipe bi-directional as they propagated through it, making compression wave and rare-faction(expansion) wave. These wave phenomena can affect to the volumetric efficiency. As a method of improvement of the volumetric efficiency, fuel economy and pollutant emission reduction particularly in low engine speeds, a side-branch additional tunable helmholtz resonator on the secondary pipe of intake system is proposed by use of their acoustic vibrations. Some of results are presented which deal with their physical phenomena for the wave action of intake system in a four-stroke three cylinders diesel engine.

  • PDF

디젤기관의 흡기 맥동류가 체적효율에 미치는 영향 (The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine)

  • 강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

레인지 익스텐더 전기자동차 엔진용 저가형 2단속도 고정밀 운전제어시스템 개발 (Development of Low-Cost, Double-Speed, High-Precision Operation Control System for Range Extender Engine)

  • 함윤영;이정준
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.529-535
    • /
    • 2018
  • 레인지 익스텐더 전기자동차는 소형의 발전용 엔진이 가장 효율이 좋은 특정 운전영역에서 기동하여 배터리를 충전시키며 주행거리를 연장하는 메커니즘으로 주행한다. 본 연구에서는 저가이면서 제어 로직이 간단한 시스템을 개발하기 위하여 기존 쓰로틀바디시스템을 대체하는 스텝모터방식 흡입공기량 공급시스템을 개발하여 기존 base 엔진에 적용하고, 흡입공기량 증대를 통한 성능 개선을 위해 흡 배기다기관의 길이 변경 효과를 실험적으로 살펴보았다. 실험결과, 하나의 스텝모터로 작동하는 Type B의 흡입공기량조절장치가 Type A보다 전 운전영역에서 성능이 높았으나 유동저항의 증가로 base 엔진보다는 성능이 낮았다. 이를 개선하기 위해 흡기매니폴드에 140mm 어댑터를 장착한 경우와 새로 설계된 70mm 길이의 배기 매니폴드를 적용한 경우 2200rpm과 4300rpm 두 속도조건에서 엔진성능이 향상됨을 확인할 수 있었다. 최적 설계된 엔진을 대상으로 레인지 익스텐더 전기자동차에 적용 가능하도록 발전기 부하를 연결하여 2단 속도로 고정밀 운전제어를 구현하였으며 그 결과, 1단 2200rpm과 2단 4300rpm 운전조건에서 ${\pm}2.5%$ 이내의 속도변화율을 나타내었고, 1단 속도에서 2단 속도로 상승 시 610rpm/s의 목표속도 추종성 결과를 얻었다.

소형 디젤 엔진용 배기 재순환용 전자식 밸브에 관한 연구 (A Study on the Electronic-ECR Valve for Light Duty Diesel Engine)

  • 송창훈;이민호;정용일;차경옥
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.37-43
    • /
    • 2003
  • The exhaust gas recirculation (EGR) is needed for one of various strategies to reduce NOx emission. But to get the proper EGR rate, the intake and exhaust system become complicated, also application of EGR system is difficult because of the penalty in fuel consumption and the increase in particulate matter. This study is focused on the development of EGR valve using the electrical method. The effects of EGR on the characteristics of NOx, CO, CO2 emissions and particulate mater have been investigated using small-displacement size 0.8-liters engine of diesel passenger car operating at several loads and speeds. After the analysis and comparison between conventional E-EGR valve and developed E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

자연흡기식 디젤 기관의 연소와 매연 배출 특성에 관한 실험적 연구 (A Study on the Combustion and Smoke Emission Characteristics of the Natural Aspiration Type Diesel Engine)

  • 정우인;박찬국
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.70-83
    • /
    • 1997
  • We made a selection of engine operating conditions in the natural aspiration type diesel engine as load and speed. The effects on the power, smoke emission and cylinder pressure characteristics of these variations in operating conditions were observed experimentally. Also, the smoke emission was predicted by using the Arrhenius equation and empirical equation of the smoke emission was made. At the same time, the correlations, between the combustion and smoke emission characteristic were examined. From the above results, it is clear that to prevent power dropping and to decrease exhaust fume whin the conditions are changed, one should improve the intake system. To do this, the best way is to lower the air-fuel mixing ratio. We found that the parameters of the indicated mean effective pressure, maximum pressure and its location and combustion duration, etc. change the motion in accordance with the conditions described above. Also, we found that the variation of the pressure cycle comes from an amplified variation of the early part of process. From the analysis of comparing combustion and exhaust fume, the exhaust fume is produced at the latter time of combustion and decreased when the combustion ratio is higher. Also, we developed a special formula which can predict the exhaust fume value according to the engine load and speed.

  • PDF

터보과급기를 장착한 직접분사식 디젤엔진의 배출 가스저감에 관한 실험적 연구 (An Experimental Study on the Reduction of Emissions in a Turbocheged D.I. Diesel Engine)

  • 윤준규;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.726-731
    • /
    • 2000
  • This study was experimentally analyzed to improve the performance and to reduce exhaust emissions in a turbochaged D.I. diesel engine of the displacement 9.4L. In generally, the system of intake port, fuel injection and turbocharger are very important factors which have influence on the engine performance and exhaust emission because the properties in the injected fuel depend on the combustion characteristics. The optimum results which is tested as available factors fur better performance and emission are as follows; the swirl ratio is 2.43, compression ratio is 16, combustion bowl is $5^{\circ}$ re-entrant type, nozzle hole diameter is ${\phi}0.28*6$, injection timing is BTDC $13^{\circ}CA$ and turbocharger is GT40 model which are selected compressor A/R 0.58 and turbine A/R 1.19.

  • PDF

4실린더 4사이클 가솔린 기관에서 EGR율이 기관성능 및 유해배출물에 미치는 영향에 관한 연구 (A Study on the Effects of EGR ratio on Engine Performance and Emission in a 4 Cylinder 4 Cycle Gasoline Engine)

  • 김태훈;조진호
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.3-15
    • /
    • 1993
  • A multi-cylinder four cycle spark ignition engine equipped with on exhaust gas recirculation(EGR) system to reduce nitric oxide emission and to improve fuel consumption rate has been comprehensively simulated In a computer program including intake and exhaust manifolds. To achieve these goals, this program was tested against experiments performed on a standard production four cylinder four cycle gasoline engine with EGR system. As EGR rate Increased, the maximum temperature of combustion chamber and NO omission concentration decreased under each driving condition. But the emission concentration of CO didn't change much through whole district in spite of the increase of EGR rate. Fuel consumption rate improved under each driving condition according to the increased of EGR rate until 10 percent EGR rate. Therefore the degree of EGR depend not only on the NO emission but also on the economy and the engine performance criteria of the engine.

  • PDF

GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석 (Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program)

  • 이유민;조인수;김주현;박승우;이진욱
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

GDI 엔진의 밸브리프트 변화에 따른 연소실내 흡기유동 및 연료분포에 대한 수치 해석적 연구 (A Numerical Study on the In-cylinder Flow and Fuel Distribution with the Change of Intake Valve Lift in a GDI Engine)

  • 김경배;송미지;김구성;강석호;이영훈;이성욱
    • 한국분무공학회지
    • /
    • 제18권2호
    • /
    • pp.100-105
    • /
    • 2013
  • While variable valve actuation or variable valve lift (VVL) is used increasingly in spark ignition (SI) engines to improve the volumetric efficiency or to reduce the pumping losses, it is necessary to understand the impact of variable valve lift and timing on the in-cylinder gas motions and mixing processes. In this paper, characteristics of the in-cylinder flow and fuel distribution for various valve lifts (4, 6, 8, 10 mm) were simulated in a GDI engine. It is expected that the investigation will be helpful in understanding and improving GDI combustion when a VVL system is used. The CFD results showed that a increased valve lift could significantly enhance the mixture and in-cylinder tumble motion because of the accelerated air flow. Also, it can be found that the fuel distribution is more affected by earlier injection (during intake process) than that of later injection (end of compression). These may contribute to an improvement in the air-fuel mixing but also to an optimization of intake and exhaust system.

고밀도 데이터센터의 열환경제어를 위한 수치해석 (Numerical Analysis of Thermal Environment Control in High-Density Data Center)

  • 권오경;김현중;차동안
    • 대한기계학회논문집B
    • /
    • 제36권8호
    • /
    • pp.821-828
    • /
    • 2012
  • CPU의 발열량 증가는 서버를 통과하는 배출공기와 유입공기와의 상당한 온도차를 발생시키고 이로 인해 배출공기의 재순환 현상과 유입공기의 바이패스 현상이 발생한다. 이는 데이터센터 냉각시스템의 효율저하를 발생시킨다. 따라서 CRAC의 제어를 통해 유입공기와 배출공기를 분리하는 것이 데이터센터 냉각시스템의 중요한 목표이다. 본 연구에서는 CFD 해석 코드인 ICEPAK을 이용하여 데이터센터에 대한 수치해석을 진행하였다. 실내부로 유입되는 공기유량의 변화에 따른 CPU의 온도와 실 전체의 온도분포를 분석하였다. 이를 통해 CPU의 발열량에 따른 최적 유입유량을 선정하였다. CPU 발열량이 100, 120, 140 W인 경우 유입유량이 $0.15m^3/s$인 지점에서 발열제거와 온도분배가 가장 잘 이루어졌다. RTI 성능지표를 이용하여 해석결과를 검증하였고 RTI 값이 81인 경우 가장 안정적인 결과를 보였다.