• Title/Summary/Keyword: insulin signaling pathway

Search Result 114, Processing Time 0.023 seconds

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Proteomic Analysis of O-GlcNAc Modifications Derived from Streptozotocin and Glucosamine Induced β-cell Apoptosis

  • Park, Jung-Eun;Kwon, Hye-Jin;Kang, Yup;Kim, Young-Soo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1058-1068
    • /
    • 2007
  • The post-translational modifications of Ser and Thr residues by O-linked $\beta$-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this may be responsible for many of the manifestations of type 2 diabetes mellitus. To determine whether excessive O-GlcNAcylation of target proteins results in pancreatic $\beta$ cell dysfunction, we increased nucleocytoplasmic protein O-GlcNAcylation levels in $\beta$ cells by exposing them to streptozotocin and/or glucosamine. Streptozotocin and glucosamine co-treatment increased O-GlcNAcylated proteomic patterns as assessed by immunoblotting, and these increases in nuclear and cytoplasmic protein O-GlcNAcylations were accompanied by impaired insulin secretion and enhanced apoptosis in pancreatic $\beta$ cells. This observed $\beta$cell dysfunction prompted us to examine Akt and Bcl-2 family member proteins to determine which proteins are O-GlcNAcylated under conditions of high HBP throughput, and how these proteins are associated with $\beta$ cell apoptosis. Eventually, we identified ten new O-GlcNAcylated proteins that were expressed during $\beta$ cell apoptosis, and analyzed the functional implications of these proteins in relation to pancreatic $\beta$ cell dysfunction.

Comparison of transcriptome between high- and low-marbling fineness in longissimus thoracis muscle of Korean cattle

  • Beak, Seok-Hyeon;Baik, Myunggi
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.196-203
    • /
    • 2022
  • Objective: This study compared differentially expressed genes (DEGs) between groups with high and low numbers of fine marbling particles (NFMP) in the longissimus thoracis muscle (LT) of Korean cattle to understand the molecular events associated with fine marbling particle formation. Methods: The size and distribution of marbling particles in the LT were assessed with a computer image analysis method. Based on the NFMP, 10 LT samples were selected and assigned to either high- (n = 5) or low- (n = 5) NFMP groups. Using RNA sequencing, LT transcriptomic profiles were compared between the high- and low-NFMP groups. DEGs were selected at p<0.05 and |fold change| >2 and subjected to functional annotation. Results: In total, 328 DEGs were identified, with 207 up-regulated and 121 down-regulated genes in the high-NFMP group. Pathway analysis of these DEGs revealed five significant (p<0.05) Kyoto encyclopedia of genes and genomes pathways; the significant terms included endocytosis (p = 0.023), protein processing in endoplasmic reticulum (p = 0.019), and adipocytokine signaling pathway (p = 0.024), which are thought to regulate adipocyte hypertrophy and hyperplasia. The expression of sirtuin4 (p<0.001) and insulin receptor substrate 2 (p = 0.043), which are associated with glucose uptake and adipocyte differentiation, was higher in the high-NFMP group than in the low-NFMP group. Conclusion: Transcriptome differences between the high- and low-NFMP groups suggest that pathways regulating adipocyte hyperplasia and hypertrophy are involved in the marbling fineness of the LT.

Decreased Expression of the Suppressor of Cytokine Signaling 6 in Human Hepatocellular Carcinoma

  • Bae, Hyun-Jin;Noh, Ji-Heon;Eun, Jung-Woo;Kim, Jeong-Kyu;Jung, Kwang-Hwa;Xie, Hong Jian;Ahn, Young-Min;Ryu, Jae-Chun;Park, Won-Sang;Lee, Jung-Young;Nam, Suk-Woo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • Suppressors of cytokine signaling (SOCS) proteins were originally identified as negative feedback regulators of cytokine signaling and include the Janus kinase/Signal transducer and activator of transcription (JAK/STAT) pathways. Recent studies have shown that SOCS proteins negatively regulate the receptor tyrosine kinase (RTK) pathway including the insulin receptor (IR), EGFR, and KIT signaling pathways. In addition, SOCS1 and SOCS3 have been reported to have anti-tumor effects in human hepatocellular carcinoma (HCC). However, it is uncertain whether other members of the SOCS family are associated with tumor development and progression. In this study, to investigate whether SOCS6 is aberrantly regulated in HCC, we examined the expression level of SOCS6 in HCC by Western blot analysis and immunohistochemical staining. The results showed that SOCS6 was down-regulated in all examined HCCs compared to the corresponding normal tissues. In addition, expression of SOCS6 was observed in the cytoplasm of most normal and precancerous tissue, but not in the HCCs by immunohistochemical staining. This is first report to demonstrate that SOCS6 is aberrantly regulated in HCC. These findings suggest that underexpression of SOCS6 is involved in hepatocarcinogenesis, and SOCS6 may play a role, as a tumor suppressor, in HCC development and progression.

Tenebrio molitor (Mealworm) Extract Improves Insulin Sensitivity and Alleviates Hyperglycemia in C57BL/Ksj-db/db Mice (C57BL/Ksj-db/db 제 2형 당뇨모델을 이용한 갈색거저리 유충(밀웜) 추출물의 인슐린 감수성 및 혈당개선효과)

  • Kim, Seon Young;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.570-579
    • /
    • 2019
  • Diabetes is one of the serious chronic metabolic diseases caused by Westernized eating habits, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent diabetic complications. This study was designed to investigate the anti-diabetic effects of a mealworm (Tenebrio molitor larva) extract (MWE) on hyperglycemia in an animal model with type 2 diabetes. Diabetic C57BL/Ksj-db/db mice were divided into three groups: diabetic control, rosiglitazone, and MWE. The mice supplemented with MWE showed significantly lower blood levels of glucose and glycosylated hemoglobin when compared with the diabetic control mice. The homeostatic index of insulin resistance was significantly lower in mice supplemented with MWE than in diabetic control mice. MWE supplementation significantly stimulated the phosphorylation of insulin receptor substrate-1 and Akt, and activation of phosphatidylinositol 3-kinase in insulin signaling pathway of skeletal muscles. Eventually, MWE increased the expression of the plasma membrane glucose transporter 4 (GLUT4) via PI3K/Akt activation. These findings demonstrate that the increase in plasma membrane GLUT4 expression by MWE promoted the uptake of blood glucose into cells and relieved hyperglycemia in skeletal muscles of diabetic C57BL/Ksj-db/db mice. Therefore, mealworms are expected to prove useful for the prevention and treatment of diabetes, and further studies are needed to improve type 2 diabetes in the future.

Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptor-gamma axis during adipogenesis of mesenchymal stem cells

  • Lee, Jun Hee;Lee, Sang Hun;Lee, Hyang Seon;Ji, Seung Taek;Jung, Seok Yun;Kim, Jae Ho;Bae, Sun Sik;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.459-466
    • /
    • 2016
  • Adipogenic differentiation of mesenchymal stem cells (MSCs) is critical for metabolic homeostasis and nutrient signaling during development. However, limited information is available on the pivotal modulators of adipogenic differentiation of MSCs. Adaptor protein Lnk (Src homology 2B3 [SH2B3]), which belongs to a family of SH2-containing proteins, modulates the bioactivities of different stem cells, including hematopoietic stem cells and endothelial progenitor cells. In this study, we investigated whether an interaction between insulin-like growth factor-1 receptor (IGF-1R) and Lnk regulated IGF-1-induced adipogenic differentiation of MSCs. We found that wild-type MSCs showed greater adipogenic differentiation potential than $Lnk^{-/-}$ MSCs. An ex vivo adipogenic differentiation assay showed that $Lnk^{-/-}$ MSCs had decreased adipogenic differentiation potential compared with wild-type MSCs. Interestingly, we found that Lnk formed a complex with IGF-1R and that IGF-1 induced the dissociation of this complex. In addition, we observed that IGF-1-induced increase in the phosphorylation of Akt and mammalian target of rapamycin was triggered by the dissociation of the IGF-1R-Lnk complex. Expression levels of a pivotal transcription factor peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) and its adipogenic target genes (LPL and FABP4) significantly decreased in $Lnk^{-/-}$ MSCs. These results suggested that Lnk adaptor protein regulated the adipogenesis of MSCs through the $IGF-1/Akt/PPAR-{\gamma}$ pathway.

Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1 (마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석)

  • Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Tae-Gyun;Park, Moon-Suk;Lee, Woo-Sun;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

Leptin, adiponectin, interleukin-6 and tumor necrosis factor-α in obese adolescents (비만아에서의 leptin, adiponectin, interleukin-6, tumor necrosis factor-α에 대한 연구)

  • Gil, Joo Hyun;Lee, Jung Ah;Kim, Ji Young;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.6
    • /
    • pp.597-603
    • /
    • 2008
  • Purpose : Obesity is associated with insulin resistance. Insulin resistance and the presence of pro-inflammatory mediators are thought to cause a state of vascular endothelial dysfunction, an abnormal lipid profile, hypertension, and vascular inflammation. These chronic inflammatory responses, which are characterized by abnormal cytokine production, lead to activation of a pro-inflammatory signaling pathway. Leptin is an important mediator of inflammatory processes and immune-mediated diseases. The purpose of this study was to investigate the relationship between leptin and various cytokines associated with obesity in adolescents. Methods : Sixty-six obese adolescents (between 16-17 years of age, obesity index >130%) and 26 normal controls were included in this study. Obesity index and body mass index (BMI) were calculated. Serum lipid profile, AST and ALT were tested after 10 hours of fasting. Tumor necrosis factor alpha (TNF-${\alpha}$) and Interleukin-6 (IL-6) levels were measured by ELISA. Insulin, adiponectin, and leptin levels were estimated by radioimmunoassay. Results : Leptin was significantly higher in the obese adolescents compared to the control adolescents ($12.0{\pm}6.8ng/mL$ vs $6.3{\pm}1.0ng/mL$). TNF-${\alpha}$, IL-6, and insulin were significantly higher in the obese adolescents. Adiponectin was significantly lower in the obese group than the control group ($3.3{\pm}1.9{\mu}g/mL$ vs $5.0{\pm}1.4{\mu}g/mL$). Leptin had positive correlations with obesity index, BMI, and IL-6. Conclusion : In obese adolescents, leptin, TNF-${\alpha}$, IL-6, and insulin might be important mediators of obesity. Further clinical research is necessary to ascertain leptin as a predictor of cardiovascular diseases and to develop a guideline for clinical intervention.

Longevity Genes: Insights from Calorie Restriction and Genetic Longevity Models

  • Shimokawa, Isao;Chiba, Takuya;Yamaza, Haruyoshi;Komatsu, Toshimitsu
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.427-435
    • /
    • 2008
  • In this review, we discuss the genes and the related signal pathways that regulate aging and longevity by reviewing recent findings of genetic longevity models in rodents in reference to findings with lower organisms. We also paid special attention to the genes and signals mediating the effects of calorie restriction (CR), a powerful intervention that slows the aging process and extends the lifespan in a range of organisms. An evolutionary view emphasizes the roles of nutrient-sensing and neuroendocrine adaptation to food shortage as the mechanisms underlying the effects of CR. Genetic and non-genetic interventions without CR suggest a role for single or combined hormonal signals that partly mediate the effect of CR. Longevity genes fall into two categories, genes relevant to nutrient-sensing systems and those associated with mitochondrial function or redox regulation. In mammals, disrupted or reduced growth hormone (GH)-insulin-like growth factor (IGF)-1 signaling robustly favors longevity. CR also suppresses the GH-IGF-1 axis, indicating the importance of this signal pathway. Surprisingly, there are very few longevity models to evaluate the enhanced anti-oxidative mechanism, while there is substantial evidence supporting the oxidative stress and damage theory of aging. Either increased or reduced mitochondrial function may extend the lifespan. The role of redox regulation and mitochondrial function in CR remains to be elucidated.

Effect of Lysophosphatidic Acid on Proliferation and Differentiation of Rat Skeletal Myoblasts in Culture

  • Kwon, Min-Seong;Cho
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.641-646
    • /
    • 1997
  • Lysophosphatidic acid (LPA; 1-acyl-glycerol-3-phosphate) has been known as an intercellular phospholipid messenger with a wide range of biological activities. In this study, the effect of LPA on both the proliferation and differentiation of rat E63 myoblasts has been investigated. In the serum-free Insulin-Transferrin-Selenium (ITS) media, the proliferation of E63 cells was largely restricted. Addition of LPA into the ITS media strongly promoted the cell proliferation and resulted in two to four fold increase of cell number. Furthermore, it appeared to increase the percent fusion in a dose-dependent manner up to 15 ug/ml. The synthesis of myosin heavy chain (MHC) was increased by LPA as well. These results indicate that LPA is able to promote both cell proliferation and differentiation in rat E63 myoblasts. Suramin, known to have uncoupling activity on growth factor-receptor interaction, was tested for antagonistic activity in myoblast proliferation and differentiation. Myoblasts grown in the ITS medium containing LPA were able to proliferate well even in the presence high concentration of suramin whereas myoblast differentiation was completely blocked by 30 ug/ml of suramin. The inhibitory effect of suramin on the myoblast differentiation was completely reversible by removing the suramin. This result indicates that the intracellular signaling pathway of LPA leading to cell proliferation might be distinct from that leading to cell differentiation on E63 myoblasts. Also, the antagonistic effect of suramin suggests that the differentiation activity elicited by LPA might be mediated by a specific G protein-coupled receptor.

  • PDF