• 제목/요약/키워드: insulin receptor signaling

검색결과 94건 처리시간 0.026초

유방암세포에서 에스트로겐 수용체와 성장인자 수용체 사이의 양방향 상호작용 (Bidirectional Cross-talk Between Estrogen Receptor and Growth Factor Receptors in Breast Cancer Cell)

  • 민계식
    • 생명과학회지
    • /
    • 제28권2호
    • /
    • pp.265-273
    • /
    • 2018
  • 에스트로겐(E2)은 유방암의 발달과 진행에 관여하며, 에스트로겐 수용체(ER)에 의해 매개된다. ER은 유방암세포에서 epidermal growth factor receptor와 insulin-like growth factor-1 receptor의 신호전달경로들 사이에서 다양한 cross-talk을 통하여 세포의 증식, 이주, 침습 및 약물에 대한 저항성을 일으키는데 중요한 역할을 수행한다. 유방암은 내분비신호전달의 항상성 붕괴에 의해 주로 발생되며, 특히 E2/IGF-1/EGF와 ER/G-protein estrogen receptor (GPER)/IGF-1R/EGFR, 그리고 이들의 세포내 신호전달 매개인자들의 통제되지 않는 발현과 활성증가에 의해 유발된다. 이러한 변화는 E2와 성장인자 신호전달 사이의 복잡한 cross-talk에 영향을 주어 결국 암의 진행과 내분비조절인자들에 대한 저항성을 갖게 된다. 따라서, E2와 성장인자들 사이의 cross-talk에 관한 분자적 기전을 단계별로 규명하는 것은 유방암의 다양한 유형에 따른 맞춤형 치료에 기여할 것으로 사료된다. 특히, 다양한 유전형 및 표현형을 가진 유방암의 치료를 위한 전략으로서, ER+ 호르몬의존성 유방암세포에 대한 aromatase 억제제 및 E2작용 차단제의 사용과 E2와 성장인자들 사이의 cross-talk에 의한 암세포의 증식억제를 위한 IGF-1R/EGFR 활성차단제의 사용 등을 들 수 있다. 뿐만 아니라, ER과 EGFR/IGF-1R 사이의 cross-talk에 의해 조절되는 ECM 분자들의 발현변화는 유방암세포의 전이에 대한 표적치료제를 위해 활용될 수 있다. 따라서, 암의 진행과 관련된 ER, GPER, IGF-1R 및 EGFR 매개에 의한 신호전달경로들 사이의 cross-talk에 관한 보다 더 자세한 분자적 수준의 규명이 필요할 것으로 사료된다.

Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway

  • Gao, Quan-Gui;Zhou, Li-Ping;Lee, Vien Hoi-Yi;Chan, Hoi-Yi;Man, Cornelia Wing-Yin;Wong, Man-Sau
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.527-538
    • /
    • 2019
  • Background: Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase-mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods: ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 ($10^{-12}M$, $10^{-8}M$), $17{\beta}$-estradiol ($10^{-8}M$), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results: Rg1 rapidly induced $ER{\alpha}$ translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), $ER{\alpha}$, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion: Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.

Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis

  • Kim, Hyeonhui;Fang, Sungsoon
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.140-146
    • /
    • 2018
  • Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.

Insulin Promotes Proliferation and Migration of Breast Cancer Cells through the Extracellular Regulated Kinase Pathway

  • Pan, Feng;Hong, Li-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6349-6352
    • /
    • 2014
  • The present study was undertaken to determine the roles of insulin in the growth of transplanted breast cancer in nude mice, and the proliferation and migration of MCF-7 human breast cancer cells and assess its influence on downstream signaling pathways. In a xenograft mouse model with injection of MCF-7 human breast cancer cells, tumor size was measured every other day. The insulin level and insulin receptor (IR) were increased in the breast cancer patient tissues. Insulin injected subcutaneously around the tumor site in mice caused increase in the size and weight of tumor masses, and promoted proliferation and migration of MCF-7 cells. The effects of insulin on the increase in the proliferation and migration of MCF-7 human breast cancer cells were abolished by pretreatment with the extracellular regulated kinase (ERK) inhibitor PD98059. Insulin increased the phosphorylation of ERK in the MCF-7 cells. These results indicate that insulin promotes the growth of breast cancer in nude mice, and increases the proliferation and migration of MCF-7 human breast cancer cells via the ERK pathway.

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

Regulation of IgE and Type II IgE receptor expression by insulin-like growth factor-1: Role ofSTAT6 and $NF-{\kappa}B$.

  • Koh, Hyun-Ja;Park, Hyun-Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.454-462
    • /
    • 2000
  • Interleukin-4(IL-4) is known to be a major cytokine regulating immunoglobulin E(IgE) response by the induction of IgE production and type II IgE receptor(IgER II: CD23) expression. Recently, however, the role of neuroendocrine factors has been implicated in modulating the IgE response. Among various neuroendocrine growth factors, we investigated the effects of the insulin-like growth factor-1(IGF-1) since IL-4 and IGF-1 share common intracellular signaling molecules, such as the insulin receptor substrate-1/2(IRS-1/2) to induce a specific cellular response. In the human peripheral blood mononuclear cell (PBMC) cultures, IGF-1 was capable of inducing a substantial level of IgE production in a dose-dependent manner. It also noticeably upregulated the IL-4-induced or IL-4 plus anti-CD40-induced IgE production. Similarly, the IGF-1-induced IgE production was enhanced by IL-4 or anti-CD40 in an additive manner, which became saturated at high concentrations of IGF-1. Although IGF-1 alone did not induce IgER II (CD23) expression, it augmented the IL-4-induced surface CD23 expression in a manner similar to the action of anti-CD40. These results imply that IGF-1 is likely to utilize common signaling pathways with IL-4 and anti-CD40 to induce IgE and IgER II expression. In support of this notion, we observed that IGF-1 enhanced the IL-4-induced signal transducers and activators of transcription 6(STAT6) activation and independently induced $NF-{\kappa}B$ activation. Both of these bind to the IgE(C) or IgER II (CD23) promoters. Together, our data suggest that IL-4 and IGF-1 work cooperatively to activate STAT6 and $NF-{\kappa}B$. This leads to the subsequent binding of these transcription factors to the $C{\varepsilon}$ and CD23 promoters to enhance the expression of IgE and IgER II. The observed differential ability of IGF-1 on the induction of IgE vs. IgER II is discussed based on the different structure of the two promoters.

  • PDF

Ligand-Independent Activation of the Androgen Receptor by Insulin-Like Growth Factor-I and the Role of the MAPK Pathway in Skeletal Muscle Cells

  • Kim, Hye Jin;Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.589-593
    • /
    • 2009
  • In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.

Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells

  • Kim, Jong-Yeon;Park, Eun-Jung;Kim, Sung-Min;Lee, Hae-Jeung
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.53.1-53.13
    • /
    • 2021
  • Background: Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. Objectives: In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. Methods: To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. Results: MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. Conclusions: Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.

Regulation of adductor muscle growth by the IGF-1/AKT pathway in the triploid Pacific oyster, Crassostrea gigas

  • Kim, Eun-Young;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제22권9호
    • /
    • pp.19.1-19.10
    • /
    • 2019
  • We investigated the insulin-like growth factor 1 (IGF-1)/AKT signaling pathway involved in muscle formation, growth, and movement in the adductor muscle of triploid Pacific oyster, Crassostrea gigas. Large and small triploid oysters (LTs and STs) cultured under identical conditions were screened, and the signaling pathways of individuals with superior growth were compared and analyzed. mRNA and protein expression levels of actin, troponin, tropomyosin, and myosin, proteins important in muscle formation, were higher in LTs compared with STs. Expression levels of IGF-1, IGF binding protein (IGFBP), and IGFBP complex acid-labile subunit were also higher in LTs compared with STs. Phosphorylation of the IGF receptor as well as that of AKT was high in LTs. In addition, the expression of phosphomammalian target of rapamycin and phospho-glycogen synthase kinase $3{\beta}$ was increased and the expression of Forkhead box O3 was decreased in LTs. Therefore, we suggested that the IGF-1/AKT signaling pathway affects the formation, growth, and movement of the adductor muscle in triploid oysters.