• 제목/요약/키워드: insulin receptor

검색결과 338건 처리시간 0.022초

Brazilin Inhibits Activities of Protein Kinase C and Insulin Receptor Serine Kinase in Rat Liver

  • Kim, Seong-Gon;Kim, You-Me;Khil, Lee-Yong;Jeon, Sun-Duck;So, Dhong-Su;Moon, Chang-Hyun;Moon, Chang-Kiu
    • Archives of Pharmacal Research
    • /
    • 제21권2호
    • /
    • pp.140-146
    • /
    • 1998
  • Hypoglycemic action of brazilin was found to be based on the improvement of peripheral glucose utility, and this action might be correlated with the insulin action pathway. In the present study we investigated the effect of brazilin on the insulin receptor autophosphorylation, protein kinase C (PKC), protein phosphatase and insulin receptor serine kinase in order to confirm whether the hypoglycemic mechanism is concerned with insulin action pathway. Brazilin was found to inhibit PKC and insulin receptor serine kinase, which are involved in the regulation of insulin signal pathway. But any significant effect was not shown on insulin receptor tyrosine kinase activity, autophosphorylation and phosphatase activity. These findings suggest that brazilin might enhance insulin receptor function by decreasing serine phosphorylation, which might mediate hypoglycemic effect of brazilin.

  • PDF

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

조골세포에서 인슐린 수용체의 세포핵으로의 이동과 타이로신 인산화 (Insulin induces nuclear translocation of insulin receptor and tyrosine phosphorylation of nuclear proteins in osteoblast)

  • Seol, Ki-Chun;Kim, Sung-Jin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.101-101
    • /
    • 2001
  • In the present study, we explored to determine if insulin has any effect on the nuclear translocation of insulin receptor and tyrosine phosphoryaltion of nuclear proteins in the UMR-106 cells. Significant amount of insulin receptors and IRS-1 proteins were detected in the nucleus. IRS-1 and PI$_3$-Kinase appeared to translocate to the nucleus in a time dependent manner. Tyrosine phosphorylation of a number of proteins including 180 KDa, 85 KDa protein in the nucleus was significantly stimulated by insulin, suggesting IRS-1 and PI$_3$-Klnase was activated in the nucleus by insulin treatment. In addition, p70 S6 Kinase, a downstream target of PI3-Kinase was transiently appeared in the nucleus by insulin and its activity was stimulated by insulin. These results suggest that the insulin signaling system containing insulin receptor, IRS-1, PI$_3$-Kinase and p70 S6 Kinase operates in the nucleus of osteoblast cells. The nuclear insulin-mediated tyrosine phosphorylation may play an essential role in the gene expression, differentiation and growth of osteoblast cells.

  • PDF

Insulin Receptor Substrate 1의 세린731 인산화 억제를 통한 살리실산의 인슐린저항성 개선효과 기전 (Salicylate Enhances Insulin Signaling by Preventing Ser731 Phosphorylation of Insulin Receptor Substrate 1)

  • 이용희
    • 약학회지
    • /
    • 제52권3호
    • /
    • pp.182-187
    • /
    • 2008
  • Salicylate (SA) was shown to alleviate insulin resistance. Here, we showed that SA inhibited Ser731 phosphorylation of insulin receptor substrate 1 (IRS1) and S6 kinase activation, and enhanced tyrosine phosphorylation of IRS1 in response to insulin or amino acid. Experiments using a cJun N-terminal kinase (JNK)-deficient cell and an IRS1 JNK-binding mutant showed that JNK is not required for Ser731 phosphorylation. A two-week treatment of obese mice with SA resulted in decreased Ser731 phosphorylation and enhanced insulin signaling. These results suggest that SA enhances insulin signaling by inhibiting Ser731 phosphorylation of IRS1.

β-Adrenergic Receptor and Insulin Resistance in the Heart

  • Mangmool, Supachoke;Denkaew, Tananat;Parichatikanond, Warisara;Kurose, Hitoshi
    • Biomolecules & Therapeutics
    • /
    • 제25권1호
    • /
    • pp.44-56
    • /
    • 2017
  • Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of ${\beta}$-adrenergic receptor (${\beta}$AR). Overstimulation of ${\beta}$ARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the ${\beta}$AR and the insulin sensitivity and the mechanism by which ${\beta}$AR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that ${\beta}$ARs overstimulation leads to induction of insulin resistance in the heart.

Insulin-like Growth Factors-Ι 과 II 는 서로 다른 수용체-매개 작용기전을 통해 돼지 지방전구세포의 증식과 분화를 촉진한다 (Insulin-like Growth Factors-Ι and II Promote Proliferation and Differentiation of Cultured Pig Preadipocytes by Different Receptor-mediated Mechanisms)

  • ;김원영;김혜림;정정수
    • Journal of Animal Science and Technology
    • /
    • 제50권5호
    • /
    • pp.649-656
    • /
    • 2008
  • 본 연구는 insulin-like growth factors(IGFs)가 돼지 지방전구세포의 증식과 분화에 미치는 작용기전을 구명하기 위해서 수행하였다. 지방전구세포는 갓난 암퇘지의 등지방에서 분리하였고, serum-deprived 조건하에서 IGFs와 mutant IGFs를 함유시켜 배양했는데 이 mutant IGFs는 IGF-Ⅰ에 비해 type-1 IGF receptor와 insulin receptor에 대한 친화력이 낮다. 50ng/ml의 IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27]IGF-Ⅱ를 배양중인 세포에 4일동안 처리했다. IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27]IGF-Ⅱ는 돼지 지방전구세포의 증식을 각각 39%, 8%, 25% 및 2% 촉진했다(증가된 세포수에 의해 측정). 이 사실은 IGF-Ⅰ과 IGF-Ⅱ는 type-1 IGF receptor 또는 insulin receptor에 결합을 통해서 지방세포의 증식 촉진을 가져왔음을 나타낸다. 그리고 IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27] IGF-Ⅱ는 지방전구세포의 분화를 50%, 17%, 37% 및 30% 각각 촉진시켰다(세포 분화는 glycerol- phosphate dehydrogenase 활성도에 의해 측정했다). IGF-Ⅰ의 type-1 IGF receptor 또는 insulin receptor에의 친화력이 낮아져서 세포 분화 촉진작용을 감소시킨 것이다. 그러나 [Leu27] IGF-Ⅱ의 분화촉진 작용은 IGF-Ⅱ의 그것에 비해 크게 차이가 나지 않았는데, 이 사실은 IGF-Ⅰ과 IGF-Ⅱ는 서로 다른 수용체-매개 작용기전에 의해 세포분화를 촉진시킴을 나타낸다. 즉 IGF-Ⅱ는 type-1 IGF receptor 또는 insulin receptor가 관여하지 않는 작용을 통해 돼지 지방전구세포의 분화를 촉진시켰다. 이 작용은 IGF-Ⅱ가 type-2 IGF receptor(또는 cation- independent mannose-6 phosphate receptor [CIM6P /IGF2 receptor])에 결합을 통해서 이뤄지는 것으로 여겨진다. 위의 결과는 IGF-Ⅱ가 CIM6P/ IGF2 receptor에의 결합을 통해 동물 지방전구세포의 분화를 촉진시킨다는 것을 밝혀낸 최초의 연구이다. 요약하면 이 본 연구는 IGF-Ⅰ과 IGF-Ⅱ는 서로 다른 세포내 receptor가 관여하는 작용기전을 통해 돼지 지방전구세포의 분화를 촉진함을 보여준다.

계배 신경아세포의 분화에 따른 Transferrin 수용체의 변화 (Changes in the Level of Transferrin Receptor during the Differentiation of Chick Brain Neuroblasts)

  • 이창호;전영주
    • 한국동물학회지
    • /
    • 제35권2호
    • /
    • pp.144-148
    • /
    • 1992
  • Insulin and transfenin (Tf) were found to be essential for suwival and differentiation of brain neuroblasts obtained from chick embryo. This requirement, however, is Changed from insulin to Tf upon neuronal development of the embryo, and this phenomenon is due to the changes in the levels of corresponding receptors. Using cultured neuroblasts, the level of Tf receptor is also found to increase Lvhile that of insulin receptor falls dramatically during the course of the cell differentiation. These results suggest that the development-specific changes in the levels of insulin and Tf receptors in embryo can be reproduced in the culture system during the differentiation period. Because the culture system used was a defined medium and contained no other macromolecules than insulin and Tf, it appears possible that insulin and Tf may act as signalling molecules in the control of neuronal development.

  • PDF

정상인(正常人) 배양섬유아세포(培養纖維芽細胞)의 인슐린 수용체(受容體)에 관한 연구(硏究) (A Study on the Insulin Receptor of the Cultured Human Fibroblasts)

  • 조경삼;김진우;김영설;김광원;김선우;최영길
    • 대한핵의학회지
    • /
    • 제17권2호
    • /
    • pp.35-40
    • /
    • 1983
  • To evaluated the usefulness of cultured human fibroblast for insulin receptor assay, the authors cultured fibroblast from biopsied normal adult female eyelid skin and assayed the insulin receptor with radioreceptor assay method. From the data obtained, percent of labeled insulin bound, numbers of insulin binding sites, affinity constants(Ka) and affinity of the empty sites(Ke) were calculated. The results were as follow; 1) The percent radioactivity bound of cultured fibroblast reached plateau at 4 hours $15^{\circ}C$ incubation. 2) The scatchard plot of insulin binding to cultured human fibroblast was curvilinear and the affinity to receptor was decreased with increased receptor occupancy. 3) The numbers of high affinity, low affinity and total insulin receptor of cultured fibroblasts were 852, 24,800 and 25,652 sites per cell. 4) High and low affinity constants of cultured fibroblasts were $3.4\times^{10}M^{-1},\;and\;1.08\times10^8M^{-1}$, and the affinity of empty site was $5.0\times10^8M^{-1}$.

  • PDF

Rabson Mendenhall syndrome의 치험 증례 (RABSON MENDENHALL SYNDROME : A CASE REPORT)

  • 권장혁;박기태
    • 대한소아치과학회지
    • /
    • 제31권3호
    • /
    • pp.481-485
    • /
    • 2004
  • Rabson Mendenhall syndrome은 Rabson과 Mendenhall에 의해 1955년 처음 발표된 증후군으로서, 심한 insulin resistance를 보이는 희귀한 상염색체 열성 유전성 질환이다. Insulin receptor의 돌연변이나 insulin이 작용하는 다른 target cell의 결함에 의해 나타나며, 일반적인 증상으로는 흑색가시세포종(acanthosis nigricans), 다모증(hypertrichosis), 손발톱 비대(onychauxis), 성장 지체 (growth retardation), 성 조숙(precocious puberty), 생식기의 비대, 팽만된 복부(protuberant abdomen), 건성 피부(xerotic skin) 등이 나타난다. 악안면 영역에서는 치아의 이형성, 거친 얼굴의 피부, 하악 전돌, 균열 혀 (fissured tongue)와 같은 특징적 증상이 나타난다. 이에 본 증례에서는 Rabson Mendenhall syndrome으로 본원에 내원한 4세 환아에게 관찰된 치과적 특징들에 관하여 보고하는 바이다.

  • PDF

Induction of insulin receptor substrate-2 expression by Fc fusion to exendin-4 overexpressed in E. coli: a potential long-acting glucagon-like peptide-1 mimetic

  • Kim, Jae-Woo;Kim, Kyu-Tae;Ahn, You-Jin;Jeong, Hee-Jeong;Jeong, Hyeong-Yong;Ryu, Seung-Hyup;Lee, Seung-Yeon;Lee, Chang-Woo;Chung, Hye-Shin;Jang, Sei-Heon
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.146-149
    • /
    • 2010
  • Exendin-4 (Ex-4), a peptide secreted from the salivary glands of the Gila monster lizard, can increase pancreatic $\beta$-cell growth and insulin secretion by activating glucagon-like peptide-1 receptor. In this study, we expressed a fusion protein consisting of exendin-4 and the human immunoglobulin heavy chain (Ex-4/IgG-Fc) in E. coli and explored its potential therapeutic use for the treatment of insulin-resistant type 2 diabetes. Here, we show that the Ex-4/IgG-Fc fusion protein induces expression of insulin receptor substrate-2 in rat insulinoma INS-1 cells. Our findings therefore suggest that Ex-4/IgG-Fc overexpressed in E. coli could be used as a potential, long-acting glucagon-like peptide-1 mimetic.