• Title/Summary/Keyword: insulin receptor

Search Result 338, Processing Time 0.032 seconds

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai;Qu, Bo;Wang, Cairu;Zhou, Jingsong;Liao, Dongfa;Zheng, Wei;Pan, Xianming
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.393-400
    • /
    • 2017
  • Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

Analysis of Gene Expression Modulated by Indole-3-carbinol in Dimethylbenz[a]anthracene-induced Rat Mammary Carcinogenesis

  • Kang, Jin-Seok;Park, Han-Jin;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • Our previous finding that pre-initiation treatment of indole-3-carbinol (I3C) represents a chemopreventive effect in dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis has prompted us to test the global expression of genes at an early stage. Rats were continuously fed 300 ppm I3C in their diet at 6 weeks of age and were injected with DMBA at 7 weeks of age, and were sacrificed at 8 weeks of age. Global gene expression analysis using oligonucleotide microarrays was conducted to detect altered genes in DMBA- or DMBA plus I3C-treated mammary glands. Altered genes were identified by fold changes of 1.2 and by t-test (P<0.05) from the log ratios of the hybridization intensity of samples between control (Group 1) and DMBA (Group 2), and from those of samples between DMBA (Group 2) and DMBA plus I3C (Group 3). From these genes, we chose altered genes that were up- or down-regulated by DMBA treatment and recovered to the control level by I3C treatment. For early stage of carcinogenesis, I3C treatment induced the recovery to normal levels of several genes including cell cycle pathway (cyclin B2, cell division cycle 2 homolog A), MAP signaling pathway (fibroblast growth factor receptor 1, platelet derived growth factor receptor, beta polypeptide), and insulin signaling (protein phosphatase 1, regulatory (inhibitor) subunit 3B and flotillin 2), which were up-regulated by DMBA treatment. In addition, I3C treatment induced the recovery to normal levels of several genes including those of MAPK signaling (transforming growth factor, beta receptor 1 and protein phosphatase 3, catalytic subunit, beta isoform), which were down-regulated by DMBA treatment. These results suggest that the targeting of these genes presents a possible approach for chemoprevention in DMBA-induced mammary carcinogenesis.

A literature Review of Single Nucleotide Polymorphisms in Obesity Genes (비만 유전자 단일 염기 다형성 문헌 고찰)

  • Kim, Sung-Soo;Song, Hee-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.

Low-dose metronomic doxorubicin inhibits mobilization and differentiation of endothelial progenitor cells through REDD1-mediated VEGFR-2 downregulation

  • Park, Minsik;Kim, Ji Yoon;Kim, Joohwan;Lee, Jeong-Hyung;Kwon, Young-Guen;Kim, Young-Myeong
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.470-475
    • /
    • 2021
  • Low-dose metronomic chemotherapy has been introduced as a less toxic and effective strategy to inhibit tumor angiogenesis, but its anti-angiogenic mechanism on endothelial progenitor cells (EPCs) has not been fully elucidated. Here, we investigated the functional role of regulated in development and DNA damage response 1 (REDD1), an endogenous inhibitor of mTORC1, in low-dose doxorubicin (DOX)-mediated dysregulation of EPC functions. DOX treatment induced REDD1 expression in bone marrow mononuclear cells (BMMNCs) and subsequently reduced mTORC1-dependent translation of endothelial growth factor (VEGF) receptor (Vegfr)-2 mRNA, but not that of the mRNA transcripts for Vegfr-1, epidermal growth factor receptor, and insulin-like growth factor-1 receptor. This selective event was a risk factor for the inhibition of BMMNC differentiation into EPCs and their angiogenic responses to VEGF-A, but was not observed in Redd1-deficient BMMNCs. Low-dose metronomic DOX treatment reduced the mobilization of circulating EPCs in B16 melanoma-bearing wild-type but not Redd1-deficient mice. However, REDD1 overexpression inhibited the differentiation and mobilization of EPCs in both wild-type and Redd1-deficient mice. These data suggest that REDD1 is crucial for metronomic DOX-mediated EPC dysfunction through the translational repression of Vegfr-2 transcript, providing REDD1 as a potential therapeutic target for the inhibition of tumor angiogenesis and tumor progression.

Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor

  • Wu, Tianyi;Qi, Wenxiao;Shan, Haojie;Tu, Bin;Jiang, Shilin;Lu, Ye;Wang, Feng
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.526-535
    • /
    • 2022
  • Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

The Effect of Insulin-Like Growth Factor-I(IGF-I) and IGF Binding Protein-3(IGFBP-3) on Cellular Proliferation in Mouse 3T3 Fibroblast Cells (마우스 섬유아세포(3T3 fibroblast cells)에서 Insulin-like Growth Factor-I(IGF-I) 및 IGF Binding Protein-3 (IGFBP-3)이 세포증식에 미치는 영향)

  • Cho, Chul-Ho;Kwak, Seung-Min;Moon, Tae-Hun;Cho, Jae-Hwa;Ryu, Jeong-Seon;Lee, Hyong-Lyeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.5
    • /
    • pp.618-628
    • /
    • 1999
  • Background: Cell growth is a balance between cell proliferation and cell death. Insulin-like growth factor-I(IGF-I), which binds IGF-I receptor(IGF-IR), mediates cellular proliferation as a potent mitogen. IGF binding protein-3(IGFBP-3) as a circulating major IGFBP can inhibit or enhance the effects of IGF-I on cellular growth by binding IGFs. Methods: We investigated the expressions of mRNA of IGF-I and IGF-IR by northern blot and phosphorylation of IGF-IR with the treatment of IGF-I by western blot in 3T3 fibroblast cells. The cellular proliferations of 3T3 cells with the treatments of IGF-I were evaluated using $^3H$-thymidine incorporation and MTT assay. Also to observe the effect of IGFBP-3 on cellular proliferation, 3T3 cells were treated with anti-IGFBP-3 and ${\alpha}IR_3$(monoclonal antibody to IGF-IR) alone or in combination. Results: Our results demonstrated that 3T3 cells showed mRNA expressions of IGF-I and IGF-IR and the IGF-I increased phosphorylation of IGF-IR. The treatments of 3T3 cells with IGF-I increased cellular proliferation in 5 % and 1 % seruma-containing media, not in serum-free media. The addition of anti-IGFBP-3 to neutralize IGFBP-3 showed 2-fold increase of cellular proliferation, and also co-incubation of anti-IGFBP-3 and ${\alpha}IR_3$ together showed similar increase of cellular proliferation in 3T3 cells. Interestingly, when the cells were pretreated with ${\alpha}IR_3$ for 4 hr, prior to the simultaneous addition of ${\alpha}IR_3$ and anti-IGFBP-3, anti-IGFBP-3-mediated cellular proliferation was decreased to control level. All of these results suggest that free IGF-I released from IGF-I/IGFBP-3 complex would be involved in the cellular proliferation. Conclusion: IGF-I is a mitogen through the activation of IGF-IR in 3T3 cells, and IGFBP-3 could be a potent inhibitor for IGF-I action by binding IGF-I.

  • PDF

Effect of Ovariectomy and Genistein on Hepatic Mitochondrial Function (난소절제와 Genistein 투여가 간 미토콘드리아 기능에 미치는 영향)

  • Lee Young Min;Jung Myeong Ho;Lee Yeon Sook;Song Jihyun
    • Journal of Nutrition and Health
    • /
    • v.37 no.9
    • /
    • pp.786-793
    • /
    • 2004
  • Women with menopause or rats with ovariectomy is associated with increased body weight, body fat and insulin resistance, which are components of metabolic syndrome. Increased prevalence of metabolic syndrome after menopause might be associated with mitochondrial dysfunction, since mitochondrial oxidative and phosphorylation activity is strongly correlated with insulin sensitivity. Although estradiol replacement prevents the metabolic syndrome, harmful effect of estradiol hampers the casual usage to prevent the metabolic syndrome. It has been reported that genistein has a mild estrogenic activity, decreases fat mass in mice and has an antidiabetic role in diabetic rats. Although insulin resistance is closely related to mitochondrial functions, there has not been yet any study in regard to the effect of dietary genistein on mitochondrial function in the insulin resistant female subjects induced by ovariectomy or similar situation. The present study investigated whether the supplementation of genistein in the high fat diet affected the mitochondrial function of high fat fed ovariectomized rats. Female Sprague Dawley rats (8 weeks old) were assigned to the following groups: sham-operated+ high fat diet (S, n=6); sham-operated + high fat diet with 0.1% genistein (S + G, n=7); ovariectomized + high fat diet (OVX, n=8); ovariectomized + high fat diet with 0.1% genistein (OVX+ G, n=8). Ovariectomy significantly increased body weight compared with S group. Genistein consumption in ovariectomized (OVX + G) rats decreased body weight gain compared with OVX rats. Liver weights were increased by ovariectomy. The hepatic mitochondrial protein density expressed as mg per g liver was lower in the OVX group than in the S group. However, OVX + G group showed the increased mitochondrial protein density similar to the level of S group. When mRNA levels of genes related to mitochondria such as peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1 (PGC-1) and cytochrome c oxidase subunit III (COX III) were measured, there were decreases in the mRNA levels of PGC-1 and COX III in S + G, OVX and OVX + G group. The activity of cytochrome c oxidase was not different between groups. We could observe the decrease in succinate dehydrogenase (SDH) activity per g liver in OVX rats. Genistein supplement increased SDH activity. In conclusion, genistein supplementation to the OVX rats enhanced mitochondrial function by increasing mitochondrial protein density and SDH activity. The improvement in mitochondrial function by genistein can contribute to the improvement in metabolic syndrome.

The Effects of Supungsunki-hwan on High Fat, High Carbohydrate Diet-induced Obese Type 2 Diabetic Mouse Model (수풍순기환 투여가 고지방, 고탄수화물 식이로 유발된 비만형 제2형 당뇨병 동물모델에 미치는 영향)

  • Park, Jong-Seol;Lee, Byung-Cheol;Doo, Ho-Kyung;Ahn, Young-Min;Ahn, Se-Young
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.257-269
    • /
    • 2009
  • Objective : Obesity is an important cause of diabetes, and lipotoxicity causes insulin resistance. Recently a lot of research is being done on PPAR-${\alpha}$. TNF-${\alpha}$. adiponectin, and leptin, which are important obesity related factors. In this study, we investigated the effects of Supungsunki-hwan on high fat. high carbohydrate diet-induced obese type 2 diabetic mouse models. Methods: Diabetes was induced in ICR male mouse (30${\pm}$5g) with Surwit's high fat, high sucrose diet. Mice were divided into 4 groups(n=10) of Normal. Control. Supungsunkj-hwan group. and acarbose group. The Supungsunki-hwsn group was given 10% Supungsunkj-hwan in their diet. and the acarbose group was given 0.5% acarbose in their diet. After 6 weeks. body weight. food intake, FBS and OGTT. lipid profile and liver enzymes, epididymal fat weight, and gene expression of leptin, adiponectin, TNF-${\alpha}$ and PPAR-${\alpha}$ were measured. Leptin. adiponectin. tumor necrosis factor(TNF)-${\alpha}$ and peroxisome proliferator-activated receptor (PPAR)-${\alpha}$ were evaluated by reverse transcription-polymerase chain reaction. Results : Supungsunkj-hwan increased the gene expression of PPAR-${\alpha}$, which reduces lipotoxicity and insulin resistance. Supungsunkj-hwan also significantly reduced triglyceride. AST. ALT serum levels. and 1 hour oral glucose tolerance levels. Conclusion : These results show that Supungsunkj-hwan improves insulin resistance in the liver and muscles, by reducing triglyceride levels and lipotoxicity through increased PPAR-${\alpha}$ gene expression. This is supported by the fact that Supungsunkj-hwan significantly reduces 1 hour oral glucose tolerance levels. Therefore we suggest that Supungsunkj-hwan would be an effective treatment for obese type 2 diabetic patients.

  • PDF

Investigation of the Insulin-like Growth Factor System in Breast Muscle during Embryonic and Postnatal Development in Langshan and Arbor Acres Chickens Subjected to Different Feeding Regimens

  • Lu, F.Z.;Chen, J.;Wang, X.X.;Liu, Honglin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.471-482
    • /
    • 2009
  • Nutrient availability may control muscle growth directly and indirectly through its influence on regulatory factors. We analyzed the effects of nutrient availability on the breast muscle insulin-like growth factor system. Real time RT-PCR was used to quantify the level of transcription in breast muscle from Langshan (LS) layer and Arbor Acres (AA) broiler chickens subjected to different feeding regimens during embryonic and postnatal development. The AA chickens were fed AA diet (AA, control group) while the LS chickens were either fed LS diet (LL) or AA diet (LA). According to our results, insulin-like growth factor (IGF)-II (embryonic day 16 (E16) - postnatal day 42 (P42)), IGF-I receptor (IGF-IR, E18-P42), and IGF binding protein (IGFBP)-2 (E18-P42), -5 (E16-P14), -7 (E12-P0), and -3 (E12-P0) were positively correlated with IGF-I, while IGFBP-3 (P0-P28) was negatively correlated with IGF-I. In comparison, IGF-IR (E18-P42), IGFBP-2 (E18-P42), IGFBP-5 (E14-P0), and IGFBP-3 (E16-P0) were positively correlated with IGF-II, while IGF-IR (E10-E16) and IGFBP-3 (P0-P28) were negatively correlated with IGF-II. Moreover, IGFBP-2 (E16-P42), -7 (E10-E16), and -3 (E10-E16) were positively correlated with IGF-IR, while IGFBP-3 (P0-P28) was negatively correlated with IGF-IR. Finally, IGFBP-7 (E12-P0) was positively correlated with IGFBP-3, while IGFBP-2 (P0-P28) and -7 (P0-P42) were negatively correlated with IGFBP-3. Overall, the AA chickens exhibited higher levels of IGF-I, IGF-IR, and IGFBP-2 mRNA expression than the LL chickens, while the opposite was true for IGFBP-7. No strain differences in IGF-I, IGF-IR, and IGFBP-7 mRNA expression were detected between LA and AA chickens; however, a strain difference was observed for IGFBP-2. LA chickens exhibited higher levels of IGFBP-2 than LL chickens, while the opposite was true for IGFBP-7. Our data show the first evidence that certain genes may be correlated during specific developmental periods and that strain differences in the expression of those genes in LS and AA chickens are due to differential responses to the same diet.