• Title/Summary/Keyword: insulin action

Search Result 204, Processing Time 0.042 seconds

Therapeutic potential of traditionally used medicinal plant Andrographis paniculata (Burm. F.) against diabesity: An experimental study in rats

  • Thakur, Ajit Kumar;Chatterjee, Shyam Sunder;Kumar, Vikas
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.7.1-7.8
    • /
    • 2014
  • Metabolic effects of ten daily doses of standardized extract of Andrographis paniculata leaves (AP) rich in andrographolide were evaluated in a rat model of type-2 diabetes and in diet induced obese rats. AP was administered per-orally as suspension in 0.3% carboxymethylcellulose at doses of 50, 100 and 200 mg/kg/day for 10 consecutive days. Blood glucose, insulin and lipid profile of rats were measured by using enzyme kits. In addition, effects of such treatments on anti-oxidant enzymes activity and histopathological changes in various organs of diabetic rats were assessed. AP treatments reversed body weight losses and increased plasma insulin level in diabetic rats. The anti-oxidant enzymes activity became normal and histopathological changes observed in pancreas, liver, kidney and spleen of diabetic animals were less severe in extract treated groups. On the other hand, hyperinsulinemia and increased body weight gains observed in high fat or fructose fed rats were less severe in the extract treated groups. These observations revealed therapeutic potentials of the extract for treatments of diabesity associated metabolic disorders, and suggest that the effects of the extract on insulin homeostasis depend on the metabolic status of animals. Activation of cytoprotective mechanisms could be involved in its mode of action.

Effects of Carassius carassius Hot-Water Extracts on Serum Insulin-like Growth Factor-I(IGF-I) and IGF-Binding Proteins in Rats (붕어육의 단백질 열수추출물이 흰쥐의 혈청중 Insulin-like Growth Factor-I(IGF-I)과 IGF-Binding Proteins에 미치는 영향)

  • 남택정;권미진;류홍수;김경숙;변재형
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.685-690
    • /
    • 1999
  • The insulin like growth factors(IGFs) are bound to several binding proteins(IGFBPs) that appear to regulate IGF transfort, receptor binding, and its action. The concentrations of these peptides are regulated by quantity and nutritional quality of dietary proteins. The aim of this study was to compare the effects of two diets, which differed in their protein source, Carassius carassius(CC), Carassius carassius hot water extract(CCHE), for 4 weeks. Body weight was significantly increased in the CC group(74.14$\pm$12.00 to 266.31$\pm$36.62g; p<0.01). Likewise, IGF I concentration of CC group(101.76$\pm$15.90 ng/ml) was significantly higher than that of CCHE group(38.50$\pm$ 11.20ng/ml; p<0.05). By western immunoblot analysis, especially IGFBP 1, 2 levels are increased, whereas IGFBP 3 level was de creased in CCHE group. After extraction of browning material from each samples, the extractive was filtered and absorbance at 420nm was measured. The absorbance of CCHE group was significantly higher than that of CC group. These results suggest that IGF I can be employed as an index of protein metabolism, particulary as a simple index in the assessing the status of protein nutrition.

  • PDF

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.

Dietary Aloe Improves Insulin Sensitivity via the Suppression of Obesity-induced Inflammation in Obese Mice

  • Shin, Eun-Ju;Shim, Kyu-Suk;Kong, Hyun-Seok;Lee, Sung-Won;Shin, Seul-Mee;Kwon, Jeung-Hak;Jo, Tae-Hyung;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.59-67
    • /
    • 2011
  • Background: Insulin resistance is an integral feature of metabolic syndromes, including obesity, hyperglycemia, and hyperlipidemia. In this study, we evaluated whether the aloe component could reduce obesity-induced inflammation and the occurrence of metabolic disorders such as blood glucose and insulin resistance. Methods: Male C57BL/6 obese mice fed a high-fat diet for 54 days received a supplement of aloe formula (PAG, ALS, Aloe QDM, and Aloe QDM complex) or pioglitazone (PGZ) and were compared with unsupplemented controls (high-fat diet; HFD) or mice fed a regular diet (RD). RT-PCR and western blot analysis were used to quantify the expression of obesity-induced inflammation. Results: Aloe QDM lowered fasting blood glucose and plasma insulin compared with HFD. Obesity-induced inflammatory cytokine (IL-$1{\beta}$, -6, -12, TNF-${\alpha}$) and chemokine (CX3CL1, CCL5) mRNA and protein were decreased markedly, as was macrophage infiltration and hepatic triglycerides by Aloe QDM. At the same time, Aloe QDM decreased the mRNA and protein of $PPAR{\gamma}/LXR{\alpha}$ and $11{\beta}$-HSD1 both in the liver and WAT. Conclusion: Dietary aloe formula reduces obesity-induced glucose tolerance not only by suppressing inflammatory responses but also by inducing anti-inflammatory cytokines in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The effect of Aloe QDM complex in the WAT and liver are related to its dual action on $PPAR{\gamma}$ and $11{\beta}$-HSD1 ression and its use as a nutritional intervention against T2D and obesity-related inflammation is suggested.

Insulin sensitivity improvement of fermented Korean Red Ginseng (Panax ginseng) mediated by insulin resistance hallmarks in old-aged ob/ob mice

  • Cheon, Jeong-Mu;Kim, Dae-Ik;Kim, Kil-Soo
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.331-337
    • /
    • 2015
  • Background: The biological actions of various ginseng extracts have been studied for treating obesity and diabetes mellitus. However, few studies have evaluated the effects of fermented Korean Red Ginseng (Panax ginseng Meyer) on metabolic syndrome. The present study evaluated the antiobesity and antidiabetic effects of fermented red ginseng (FRG) on old-aged, obese, leptin-deficient (B6.V-Lepob, "ob/ob") mice. Methods: The animals were divided into three groups and given water containing 0%, 0.5%, and 1.0% FRG for 16 wk. The effect of FRG on ob/ob mice was determined by measuring changes in body weight, levels of blood glucose, serum contents of triglycerides, total cholesterol and free fatty acids, messenger RNA (mRNA) expressions of key factors associated with insulin action, such as insulin receptor (IR), lipoprotein lipase (LPL), glucose transporter 1 and 4 (GLUT1 and GLUT4), peroxisome proliferators-activated receptor gamma ($PPAR-{\gamma}$), and phosphoenolpyruvate carboxykinase (PEPCK) in the liver and in muscle, and histology of the liver and pancreas. Results: FRG-treated mice had decreased body weight and blood glucose levels compared with control ob/ob mice. However, anti-obesity effect of FRG was not evident rather than hypoglycemic effect in old aged ob/ob mice. The hyperlipidemia in control group was attenuated in FRG-treated ob/ob mice. The mRNA expressions of IR, LPL, GLUT1, GLUT4, $PPAR-{\gamma}$, and PEPCK in the liver and in muscle were increased in the FRG-treated groups compared with the control group. Conclusion: These results suggest that FRG may play a vital role in improving insulin sensitivity relative to reducing body weight in old-aged ob/ob mice.

Glucose and Insulin Stimulate Lipogenesis in Porcine Adipocytes: Dissimilar and Identical Regulation Pathway for Key Transcription Factors

  • Zhang, Guo Hua;Lu, Jian Xiong;Chen, Yan;Dai, Hong Wei;ZhaXi, YingPai;Zhao, Yong Qing;Qiao, Zi Lin;Feng, Ruo Fei;Wang, Ya Ling;Ma, Zhong Ren
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.797-806
    • /
    • 2016
  • Lipogenesis is under the concerted action of ChREBP, SREBP-1c and other transcription factors in response to glucose and insulin. The isolated porcine preadipocytes were differentiated into mature adipocytes to investigate the roles and interrelation of these transcription factors in the context of glucose- and insulin-induced lipogenesis in pigs. In ChREBP-silenced adipocytes, glucose-induced lipogenesis decreased by ~70%, however insulin-induced lipogenesis was unaffected. Moreover, insulin had no effect on ChREBP expression of unperturbed adipocytes irrespective of glucose concentration, suggesting ChREBP mediate glucose-induced lipogenesis. Insulin stimulated SREBP-1c expression and when SREBP-1c activation was blocked, and the insulin-induced lipogenesis decreased by ~55%, suggesting SREBP-1c is a key transcription factor mediating insulin-induced lipogenesis. $LXR{\alpha}$ activation promoted lipogenesis and lipogenic genes expression. In ChREBP-silenced or SREBP-1c activation blocked adipocytes, $LXR{\alpha}$ activation facilitated lipogenesis and SREBP-1c expression, but had no effect on ChREBP expression. Therefore, $LXR{\alpha}$ might mediate lipogenesis via SREBP-1c rather than ChREBP. When ChREBP expression was silenced and SREBP-1c activation blocked simultaneously, glucose and insulin were still able to stimulated lipogenesis and lipogenic genes expression, and $LXR{\alpha}$ activation enhanced these effects, suggesting $LXR{\alpha}$ mediated directly glucose- and insulin-induced lipogenesis. In summary, glucose and insulin stimulated lipogenesis through both dissimilar and identical regulation pathway in porcine adipocytes.

Insulin Resistance Reduces Sensitivity to Cis-Platinum and Promotes Adhesion, Migration and Invasion in HepG2 Cells

  • Li, Lin-Jing;Li, Guang-Di;Wei, Hu-Lai;Chen, Jing;Liu, Yu-Mei;Li, Fei;Xie, Bei;Wang, Bei;Li, Cai-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3123-3128
    • /
    • 2014
  • The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the stability of HepG2/IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

A Study on the Mechanism of Insulin Sensitivity to Glucose Transport System: Distribution of Subcellular Fractions and Cytochalasin B Binding Proteins (인슐린의 포도당 이동 촉진 기전에 관한 연구 -세포내부 미세구조와 Cytochalasin B 결합단백질의 분포-)

  • Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.331-344
    • /
    • 1990
  • What makes glucose transport function sensitive to insulin in one cell type such as adipocyte, and insensitive in another such as liver cells is unresolved question at this time. Recently it is known that insulin stimulates glucose transport in adipocytes largely by redistributing transporter from the storage pool that is included in a low density microsomal fraction to plasma membrane. Therefore, insulin sensitivity may depend upon the relative distribution of gluscose transporters between the plasma membrane and in an intracellular storage compartment. In hepatocytes, the subcellular distribution of glucose transporter is less well documented. It is thus possible that the apparent insensitivity of the hepatocyte system could be either due to lack of the constitutively maintained, intracellular storage pool of glucose transporter or lack of insulin-mediated transporter translocation mechanism in this cell. In this study, I examined if any intracellular glucose transporter pool exists in hepatocytes and this pool is affected by insulin. The results obtained summarized as followings: 1) Distribution of subcellular fractions of hepatocyte showed that there are $24.9{\pm}1.3%$ of plasma membrane, $36.9{\pm}1.7%$ of nucleus-mitochondria enriched fraction, $23.5{\pm}1.2%$ of lysosomal fraction, $9.6{\pm}1.0%$ of high density microsomal fraction and $4.9{\pm}0.5%$ of low density microsomal fraction. 2) In adipocyte, there were $29.9{\pm}2.6%$ of plasma membrane, $19.4{\pm}1.9%$ of nucleus-mitochondria enriched fraction, $26.7{\pm}1.8%$ of high density microsomal fraction and $23.9{\pm}2.1%$ of low density microsomal fraction. 3) Surface labelling of sodium borohydride revealed that plasma membrane contaminated to lysosomal fraction by $26.8{\pm}2.8%$, high density microsomal fraction by $8.3{\pm}1.3%$ and low density microsomal fraction by $1.7{\pm}0.4%$ respectively. 4) Cytochalasin B bound to all of subcellular fractions with a Kd of $1.0{\times}10^{-6}M$. 5) Photolabelling of cytochalasin B to subcellular fractions occurred on 45 K dalton protein band, a putative glucose transporter and D-glucose inhibited the photolabelling. 6) Insulin didn't affect on the distribution of subcellular fractions and translocation of intracellular glucose transporters of hepatocytes. 7) HEGT reconstituted into hepatocytes was largely associated with plasma membrane and very little was found in low density microsomal fraction which equals to the native glucose transporter distribution. Insulin didn't affect on the distribution of exogeneous glucose transporter in hepatocytes. From the above results it is concluded that insulin insensitivity of hepatocyte may due to lack of intracellular storage pool of glucose transporter and thus intracellular storage pool of glucose transporter is an essential feature of the insulin action.

  • PDF

Repaglinide, but Not Nateglinide Administered Supraspinally and Spinally Exerts an Anti-Diabetic Action in D-Glucose Fed and Streptozotocin-Treated Mouse Models

  • Sim, Yun-Beom;Park, Soo-Hyun;Kang, Yu-Jung;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Lim, Su-Min;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.493-497
    • /
    • 2013
  • We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to $30{\mu}g$ of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.

Characteristics of Antidiabetic Effect of Dioscorea rhizoma(1) - Hypoglycemic Effect - (산약의 항당뇨 특성 연구(1) - 혈당 강하 효과 -)

  • Kang, Tong-Ho;Choi, Sang-Zin;Lee, Tae-Ho;Son, Mi-Won;Kim, Sun-Yeou
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.425-429
    • /
    • 2008
  • Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Type 1 diabetes, or juvenile-onset diabetes, results from a cellular-mediated autoimmune destruction of the ${\beta}$-cells of the pancreas. Type 2 diabetes, or adult-onset diabetes, is a term used for individuals who have insulin resistance, a condition that makes it harder for the cells to properly use insulin, and usually have relative insulin deficiency. The diabetes causes the onset of chronic complications and diabetic neuropathy is one of the most debilitating complications. In this study, the hypoglycemic effect and the preventive effect of diabetic complications of Dioscorea rhizoma extract(DRE) were examined in rodent model. We investigated the glucose tolerance test and long term hypoglycemic effect of DRE in Type 1 streptozotocin-induced diabetic rats and Type 2 diabetic db/db mice. DRE showed a hypoglycemic effect on blood glucose levels than that of control group in Type 1 streptozotocin-induced diabetic rats and Type 2 diabetic db/db mice. On the basis of our results, we conclude that long-term use of DRE might help decrease blood glucose level and prevention of diabetes-associated complication.