• 제목/요약/키워드: insulin

검색결과 2,896건 처리시간 0.026초

The relationship between muscle mitochondrial nutritional overloading and insulin resistance

  • Jeon, Jae-Han;Moon, Jun-Sung;Won, Kyu-Chang;Lee, In-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • 제34권1호
    • /
    • pp.19-28
    • /
    • 2017
  • The incidence of type 2 diabetes mellitus and insulin resistance is growing rapidly. Multiple organs including the liver, skeletal muscle and adipose tissue control insulin sensitivity coordinately, but the mechanism of skeletal muscle insulin resistance has not yet been fully elucidated. However, there is a growing body of evidence that lipotoxicity induced by mitochondrial dysfunction in skeletal muscle is an important mediator of insulin resistance. However, some recent findings suggest that skeletal mitochondrial dysfunction generated by genetic manipulation is not always correlated with insulin resistance in animal models. A high fat diet can provoke insulin resistance despite a coordinate increase in skeletal muscle mitochondria, which implies that mitochondrial dysfunction is not mandatory in insulin resistance. Furthermore, incomplete fatty acid oxidation by excessive nutrition supply compared to mitochondrial demand can induce insulin resistance without preceding impairment of mitochondrial function. Taken together we suggested that skeletal muscle mitochondrial overloading, not mitochondrial dysfunction, plays a pivotal role in insulin resistance.

소평탕(消平湯)이 RIN-m5F 세포에서 인슐린 분비 및 유전자 발현에 미치는 영향 (Effect of Sopyung-tang Extract on Insulin Secretion and Gene Expression in RIN-m5F Cells)

  • 윤성식;조충식
    • 대한한방내과학회지
    • /
    • 제31권1호
    • /
    • pp.25-39
    • /
    • 2010
  • Background : At high glucose levels in $\beta$-cells, cell viability and insulin secretion are decreased by glucotoxicity. Sopyung-tang(SPT) had an effect on blood glucose level decrease and antioxidant enzyme activities in streptozotocin-induced diabetic rats. Objectives : This study performed a series of experiment to verify the effects of SPT extract on the cell viability, antioxidant enzyme activities, insulin secretion and insulin mRNA expression at hyperglycemic states of RIN-m5F. Methods : After treatment at various concentrations of SPT added to the RIN-m5F cells, cell viability by MTT assay, free radical-scavenging activity, SOD activity and insulin secretion were measured. Additionally, insulin-related gene expression was measured using real-time RT-PCR. Results : Compared to the control group, SPT extract showed considerable effects on RIN-m5F cell viability, DPPH radical-scavenging activity, superoxide dismutase (SOD) activity, insulin secretion and insulin-related gene expression. Conclusions : This study showed that SPT extract has an effect on $\beta$-cell cell viability, insulin secretion and insulin-related gene expression. Thus, SPT extract may be used for treatment of diabetes and its complications. Further mechanism studies of SPT seem to be necessary on the glucotoxicity and oxidative stress.

Blood glucose levels, insulin concentrations, and insulin resistance in healthy women and women with premenstrual syndrome: a comparative study

  • Zarei, Safar;Mosalanejad, Leili;Ghobadifar, Mohamed Amin
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제40권2호
    • /
    • pp.76-82
    • /
    • 2013
  • Objective: To compare the blood glucose levels, insulin concentrations, and insulin resistance during the two phases of the menstrual cycle between healthy women and patients with premenstrual syndrome (PMS). Methods: From January of 2011 to the August of 2012, a descriptive cross-sectional study was performed among students in the School of Medicine of Jahrom University of Medical Sciences. We included 30 students with the most severe symptoms of PMS and 30 age frequency-matched healthy controls. We analyzed the serum concentrations of glucose, insulin, and insulin resistance by using the glucose oxidase method, radioimmunometric assay, and homeostasis model assessment of insulin resistance equation, respectively. Results: No significant differences between the demographic data of the control and PMS groups were observed. The mean concentrations of glucose of the two study groups were significantly different during the follicular and luteal phases (p=0.011 vs. p<0.0001, respectively). The amounts of homeostasis model assessment of insulin resistance of the two study groups were significantly different in the luteal phase (p=0.0005). Conclusion: The level of blood glucose and insulin resistance was lower during the two phases of the menstrual cycle of the PMS group than that of the controls.

Insulin Cannot Activate Extracellular-signal-related Kinase Due to Inability to Generate Reactive Oxygen Species in SK-N-BE(2) Human Neuroblastoma Cells

  • Hwang, Jung-Jin;Hur, Kyu Chung
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.280-287
    • /
    • 2005
  • The insulin-mediated Ras/mitogen-activated protein (MAP) kinase cascade was examined in SK-N-BE(2) and PC12 cells, which can and cannot produce reactive oxygen species (ROS), respectively. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) was much lower in SK-N-BE(2) cells than in PC12 cells when the cells were treated with insulin. The insulin-mediated interaction of IRS-1 with Grb2 was observed in PC12 but not in SK-N-BE(2) cells. Moreover, the activity of extracellular-signal-related kinase (ERK) was much lower in SK-N-BE(2) than in PC12 cells when the cells were treated with insulin. Application of exogenous $H_2O_2$ caused increased tyrosine phosphorylation and Grb2 binding to IRS-1 in SK-N-BE(2) cells, while exposure to an $H_2O_2$ scavenger (N-acetylcysteine) or to a phophatidylinositol-3 kinase inhibitor (wortmannin), and expression of a dominant negative Rac1, decreased the activation of ERK in insulin-stimulated PC12 cells. These results indicate that the transient increase of ROS is needed to activate ERK in insulin-mediated signaling and that an inability to generate ROS is the reason for the insulin insensitivity of SK-N-BE(2) cells.

흡수촉진제인 지방산염이 토끼의 비강점막 균질액에서 인슐린 분해에 미치는 영향 (Effect of Fatty Acid Salts on Proteolysis of Insulin in the Nasal Tissue Homogenates of Rabbits)

  • 한건;차철희;정연복;박정숙
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권2호
    • /
    • pp.97-104
    • /
    • 1992
  • The purpose of this study was (i) to determine whether protease inhibition by medium chain fatty acids such as sodium caprate, sodium caprylate and sodium laurate led to suppression of insulin proteolysis over a range of insulin concentrations and (ii) elucidate preventing effect of the enhancers on molecular self-association of insulin in pH 7.4 phosphate buffer isotonic solution. To this end, the rate of insulin proteolysis in nasal tissue supernatants of the albino rabbits was determined in the presence of $0.1{\sim}2%$ sodium caprylate, sodium caprate and sodium laurate at insulin concentrations ranging from $5\;to\;100\;{\mu}M$. At fatty acid salts concentration lower than 0.5%, insulin proteolysis was accelerated but the enhancers of high concentration (>1%) reduced the rate of insulin proteolysis. These effects were dependent upon insulin concentration and chain length of fatty acid salts. Circular dichroism spectra of insulin solutions were then determined. Monomer fraction of insulin was increased with increasing sodium caprate. Therefore, half-life decrease of insulin at low concentrations of the enhancers was attributed to deaggregation of insulin by the enhancers, increasing the proportion of monomers available for nasal proteolysis. And the increase of half-life at high concentration of the enhancers was attributed to inhibitory effect on protease rather than the effect of monomer fraction.

  • PDF

An association of urinary sodium-potassium ratio with insulin resistance among Korean adults

  • Park, Yeong Mi;Kwock, Chang Keun;Park, Seyeon;Eicher-Miller, Heather A.;Yang, Yoon Jung
    • Nutrition Research and Practice
    • /
    • 제12권5호
    • /
    • pp.443-448
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: This study was conducted to investigate the effects of sodium-potassium ratio on insulin resistance and sensitivity in Korean adults. SUBJECTS/METHODS: Subjects were 3,722 adults (1,632 men and 2,090 women) aged 40-69 years participating in the Korean genome and epidemiology study_Ansan and Ansung study. Insulin resistance was assessed using homeostasis model assessment of insulin resistance (HoMA-IR) and fasting insulin, and insulin sensitivity was assessed by using the quantitative insulin sensitivity check index (QUICKI). The 24-h urinary sodium and potassium excretion were estimated from spot urinary samples using the Tanaka formula. The generalized linear model was applied to determine the association between urinary sodium-potassium ratio and insulin resistance. RESULTS: HoMA-IR (P-value = 0.029, P-trend = 0.008) and fasting insulin (P-value = 0.017, P-trend = 0.005) levels were positively associated with 24-h estimated urinary sodium-potassium ratio in the multivariable model. QUICKI was inversely associated with 24-h estimated urinary sodium-potassium ratio in all models (P-value = 0.0002, P-trend < 0.0001 in the multivariate model). CONCLUSION: The present study suggests that high sodium-potassium ratio is related to high insulin resistance and low insulin sensitivity. Decreasing sodium intake and increasing potassium intake are important for maintaining insulin sensitivity. Further studies are needed to confirm these findings in longitudinal studies.

A Portulaca oleracea L. extract promotes insulin secretion via a K+ATP channel dependent pathway in INS-1 pancreatic β-cells

  • Park, Jae Eun;Han, Ji Sook
    • Nutrition Research and Practice
    • /
    • 제12권3호
    • /
    • pp.183-190
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: This study was designed to investigate how a Portulaca oleracea L. extract (POE) stimulates insulin secretion in INS-1 pancreatic ${\beta}-cells$. MATERIALS/METHOD: INS-1 pancreatic ${\beta}-cells$ were incubated in the presence of various glucose concentrations: 1.1 or 5.6, 16.7 mM glucose. The cells were treated with insulin secretagogues or insulin secretion inhibitor for insulin secretion assay using an insulin ELISA kit. In order to quantify intracellular influx of $Ca^{2+}$ caused by POE treatment, the effect of POE on intracellular $Ca^{2+}$ in INS-1 pancreatic ${\beta}-cells$ was examined using Fluo-2 AM dye. RESULTS: POE at 10 to $200{\mu}g/mL$ significantly increased insulin secretion dose-dependently as compared to the control. Experiments at three glucose concentrations (1.1, 5.6, and 16.7 mM) confirmed that POE significantly stimulated insulin secretion on its own as well as in a glucose-dependent manner. POE also exerted synergistic effects on insulin secretion with secretagogues, such as L-alanine, 3-isobutyl-1-methylxanthine, and especially tolbutamide, and at a depolarizing concentration of KCl. The insulin secretion caused by POE was significantly attenuated by treatment with diazoxide, an opener of the $K{^+}_{ATP}$ channel (blocking insulin secretion) and by verapamil (a $Ca^{2+}$ channel blocker). The insulinotropic effect of POE was not observed under $Ca^{2+}$-free conditions in INS-1 pancreatic ${\beta}-cells$. When the cells were preincubated with a $Ca^{2+}$ fluorescent dye, Fluo-2 (acetoxymethyl ester), the cells treated with POE showed changes in fluorescence in red, green, and blue tones, indicating a significant increase in intracellular $Ca^{2+}$, which closely correlated with increases in the levels of insulin secretion. CONCLUSIONS: These findings indicate that POE stimulates insulin secretion via a $K{^+}_{ATP}$ channel-dependent pathway in INS-1 pancreatic ${\beta}-cells$.

체외에서 돼지 황체화 과립막세포의 스테로이드 호르몬 생산에 미치는 Relaxin과 Insulin의 영향 (Effects of Relaxin and Insulin on Porcine Granulosa-lutein Cell Steroidogenesis In Vitro)

  • 이명섭;;이창규;강성근;이병천;황우석
    • 한국수정란이식학회지
    • /
    • 제20권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Relaxin과 insulin이 돼지 난포 과립막세포의 스테로이드 호르몬 분비에 미치는 영향을 연구하기위하여 체외에서 황체화된 과립막세포에서 prosesterone과 $17{\beta}-estradiol$의 생산을 조사하였다. 돼지난포 과립막세포를 혈청 존재하에 배양접시에 부착 후 48시간 동안 체외배양하고 무혈청 배지에서 24시간 배양하였다. Relaxin과 insulin의 용량의존성을 확인하기 위하여 다양한 농도 (10, 100, 1,000 ng/ml)를 각각 무혈청 배지에 첨가하였다. 병합 효과를 알아보기 위하여 100 ng/ml relaxin과 100 ng/ml insulin을 단독 혹은 병합하여 처리하였는데 황체호르몬 (100 ng/ml)을 처리한 경우와 처리하지 않은 경우 모두를 조사, 분석하였다. 최종 배양이 끝난 배양액을 수집하여 RIA법으로 proses-terone과 $17{\beta}-estradiol$의 농도를 조사하였다. Relaxin과 insulin은 용량이 증가될수록 progesterone의 생산을 증가시켰으나 $17{\beta}-estradiol$의 생산에는 아무런 영향이 없었다. 병합실험에서는 relaxin과 insulin 단독 또는 병합시 황체호르몬 존재 하에서 progesterone의 생산을 증가시켰으나 $17{\beta}-estradiol$의 생산에는 아무런 영향이 없었다. 결론적으로 relaxin과 insulin은 돼지 황체화 과립막세포의 progesterone 분비를 증가시키지만 $17{\beta}-estradiol$의 생산에는 효과가 없었으며 병합에 의한 상승효과는 없었다. Progesterone 생산에 미치는 relaxin과 insulin의 효과는 황체호르몬의 존재에 의해 증대되었다.

Insulin Induces Transcription of VEGF in Arnt-dependent but HIF-l$\alpha$-Independent Pathway

  • Park, Youngyeon;Park, Hyuns-Sung
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.100-100
    • /
    • 2001
  • Hypoxia is a pathophysiological condition that occurs during injury, ischemia, and stroke. Hypoxic stress induces the expression of genes associated with increased energy flux, including the glucose transporters Glutl and Glut3, several glycolytic enzymes, nitric oxide synthase, erythropoietin and vascular endothelial growth factor. Induction of these genes is mediated by a common basic helix-loop-helix PAS transcription complex, the hypoxia-inducible factor-l${\alpha}$ (HIF-1${\alpha}$)/ aryl hydrocarbon receptor nuclear translocator (ARNT). Insulin plays a central role in regulating metabolic pathways associated with energy storage and utilization. It triggers the conversion of glucose into glycogen and triglycerides and inhibits gluconeogenesis. Insulin also induced hypoxia-induced genes. However the underlying mechanism is unestablished. Here, we study the possibility that transcription factor HIF-1${\alpha}$ is involved in insulin-induced gene expression. We investigate the mechanism that regulates hypoxia-inducible gene expression In response to insulin We demonstrate that insulin increases the transcription of hypoxia- inducible gene. Insulin-induced transcription is not detected in Arnt defective cell lines. Under hypoxic condition, HIF- l${\alpha}$ stabilizes but does not under insulin treatment. Insulin-induced gene expression is inhibited by presence of PI-3 kinase inhibitor and Akt dominant negative mutant, whereas hypoxia-induced gene expression is not. ROS inhibitor differently affects insulin-induced gene expressions and hypoxia-induced gene expressions. Our results demonstrate that insulin also regulates hypoxia-inducible gene expression and this process is dependent on Arnt. However we suggest HIF-l${\alpha}$ is not involved insulin-induced gene expression and insulin- and hypoxia- induces same target genes via different signaling pathway.

  • PDF