• Title/Summary/Keyword: insulation layer

Search Result 389, Processing Time 0.023 seconds

Heat dissipation of Al2O3 Insulation layer Prepared by Anodizing Process for Metal PCB (Metal PCB에 있어서 양극산화법으로 제작한 Al2O3절연막의 방열특성)

  • Jo, Jae-Seung;Kim, Jeong-Ho;Ko, Sang-Won;Lim, Sil-Mook
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.2
    • /
    • pp.33-37
    • /
    • 2015
  • High efficiency LED device is being concerned due to its high heat loss, and such heat loss will cause a shorter lifespan and lower efficiency. Since there is a demand for the materials that can release heat quickly into the external air, the organic insulating layer was required to be replaced with high thermal conductive materials such as metal or ceramics. Through anodizing the upper layer of Al, the Breakdown Voltage of 3kV was obtained by using an uniform thickness of $60{\mu}M$ aluminum oxide($Al_2O_3$) and was carried out to determine the optimum process conditions when thermal cracking does not occur. Two Ni layers were formed above the layer of $Al_2O_3$ by sputtering deposition and electroplating process, and saccharin was added for the purpose of minimizing the remain stress in electroplating process. The results presented that the 3-layer film including the Ni layer has an adhesive force of 10N and the thermal conductivity for heat dissipation is achieved by 150W/mK level, and leads to improvement about 7 times or above in thermal conductivity, as opposed to the organic insulation layer.

Studies on the Thermal Environment in Sleeping (II) -Thermal Insulation Effect of Bedding on Lightweight- (수면 열환경에 관한 연구 (II) -침구의 경량화에 따른 보온력-)

  • Sung, Su-Kwang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.470-474
    • /
    • 1993
  • This study carried out to get some fundamental data for designing lightweight bedding. In This study, the wool blanket, polyester/cotton blended blanket and down quilt were manufactured with a varied materials, structural factors such as yam count, fabric density respectivelyarn. And also, the thermal insulation value of the bedding were measured by warmth retaining tester. In addition, this paper examines the influence of varying materials, structural factors and blanket layers on the thermal insulation effect of the bedding. The main results obtained from this study are as follow : 1. The design of lightweight blankets make an attempting with a varying materials and structural factors such as yam count, fabric densityarn. 2. Almost, the design of lightweight blankets for polyester/cotton blended blanket and down quilt make an attempting without reduction in thermal insulation values. 3. The 6 layers of blanket have less thermal insulation value than the 6 times of blanket for under a layer have. About 27~32% decrease is observed in thermal insulation value of blanket for under 6 layer. 4. The thermal insulation value and areal weight of blankets have a positive relation between the thermal insulation value(Y) and areal weight(X) is based on the following equation. wool blanket : Y = 1.0850X + 0.4188 (r = 0.9992) PIC blended blanket : Y = 0.8845X + 0.3034 (r = 0.9999)

  • PDF

A Study on the Thermal Characteristics of the Vacuum Jacket Valve for Transporting Liquefied Hydrogen According to the Degree of Vacuum (액화수소 수송용 진공자켓 밸브의 진공도에 따른 열적특성에 대한 연구)

  • OH, SEUNG JUN;JEON, KYUNG SOOK;YOON, JEONG HWAN;CHOI, JEONGJU
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.585-591
    • /
    • 2021
  • Liquefied hydrogen have advantage which reduces the volume by about 800 times or more compared to hydrogen gas, so it is possible to increase the storage density. However, liquefied hydrogen produced by cryogenic cooling of 20 K or less at normal pressure has a problem of maximizing the insulation effect that blocks heat introduced from the outside. Representative insulation technologies include vacuum insulation and multi-layer insulation materials and in general, heat blocking is attempted by combining insulation technologies. Therefore, in this study, the pressure of the internal vacuum layer was changed to 10-1, 10-2, 10-3 and 10-4 Torr to confirm the thermal insulation performance of the vacuum jacket valve for transporting liquefied hydrogen. As a result, it was confirmed that the insulation performance improved as the degree of vacuum increased.

The nonvolatile memory device of amorphous silicon transistor (비정질실리콘 박막트랜지스터 비휘발성 메모리소자)

  • Hur, Chang-Wu;Park, Choon-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1123-1127
    • /
    • 2009
  • This paper expands the scope of application of the thin film transistor (TFT) in which it is used as the switching element by making the amorphous silicon TFT with the non-volatile memory device,. It is the thing about the amorphous silicon non-volatile memory device which is suitable to an enlargement and in which this uses the additionally cheap substrate according to the amorphous silicon use. As to, the amorphous silicon TFT non-volatile memory device is comprised of the glass substrates and the gate, which evaporates on the glass substrates and in which it patterns the first insulation layer, in which it charges the gate the floating gate which evaporates on the first insulation layer and in which it patterns and the second insulation layer in which it charges the floating gate, and the active layer, in which it evaporates the amorphous silicon on the second insulation layer the source / drain layer which evaporates the n+ amorphous silicon on the active layer and in which it patterns and the source / drain layer electrode in which it evaporates on the source / drain layer.

Hygrothermal Performance Improvement Plan of Standard Model for Rural Housing and Wooden Housing (농촌주택 및 목조주택 표준모델 구조체의 습·열 환경 성능 개선 방안)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.63-71
    • /
    • 2021
  • The purpose of this study was to investigate whether the standard models for rural housing and wooden housing model have performance for hygrothermal and to propose a way of improvement relevant to hygrothermal performance for those models. All of the models to be analyzed were found to have some parts that were absent of stability in terms of performance for hygrothermal. In the process of analyzing the causes and proposing improvement measures, the following conclusions were derived. Fist, The exterior surface of the structure should be composed of a structure with good moisture permeability, and for the interior surface, a variable vapor retarder paper should be applied in consideration of the reverse condensation phenomenon in summer. Second, in terms of performance for hygrothermal, applications of external insulation plaster finish to the exterior wall or of ventilation method using a rafter vent on the roof should be avoided. Third, a rain screen method with a ventilation layer should be applied to the exterior wall, and a method of constructing ventilation layer separated from the insulation layer with a vapor retarder paper should be applied to the roof. Fourth, the application of insulation materials having capillary action, such as wood fiber insulation board or cellulose insulation board, contributes to more stable performance for hygrothermal.

Temperature History of Slab Concrete Depending on Insulation Curing Method in Cold Weather Concreting (한중시공시 단열양생방법 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Kim Jong-Back;Lim Choon-Goun;Park Koo-Byoung;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.17-20
    • /
    • 2005
  • This paper reported the temperature history of concrete placed at deck plate slab under cold climate condition by varying with surface insulating type. No curing sheet and simple insulation curing including non-woven fabric, double layer bubble sheet, the combination of double layer bubble sheet and non-woven fabric dropped temperature below zero within 24 hours, which caused frost damage at early age. On the other hand, the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam maintained minimum temperature above $4^{\circ}C\;and\;8^{\circ}C$, respectively. Based on core test results compressive strength of concrete with the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam was higher than those with other curing method due to good insulation effect.

  • PDF

A Numerical Study on Natural Convection Between Skin and Fabrics (Phoenics를 이용한 옷감의 종류 및 두께의 변화에 따른 열전달 특성의 수치 해석적 연구)

  • 홍지명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.1
    • /
    • pp.142-148
    • /
    • 1995
  • In this study, FVM (Finite Volume Method) which is one of the 2-dimensional numerical approach has been conducted to anticipate the temperature distribution between skin and clothes by the change of air temperature and fabric characteristics including fabric thickness. Several experimental works have been done to understand the thermal insulation effect (If fabrics on a human body by measuring the averaged temperature in the air layer between skin and clothes or by measuring the thermal resistance of fabrics. However, the formal method is inconvenient to measure the temperature distribution in the air layer to evaluate the insulation rate of the clothes on the skin because the real size of the clearance between skin and the clothes is too small to place the temperature sensor, and in the Tatter method the relationship between human body and the fabrics are ignored. However, the numerical method will be very effective and economical way to evaluate the insulation efficiency of clothes when the computational result is in the reliable range. As the result of this study, the temperature change in the sir layer between skin and clothes was linear to the fabric thickness and this result coincides with many previous experimental results. Moreover, it is possible to predict the optimum fabric thickness for the best thermal insulation in the air layer between skin and clothes.

  • PDF

Effect of Insulation Layer on Birefringence and Land-groove Pattern in DVD-RAM Substrate (단열층이 DVD 기판의 복굴절 및 전사성에 미치는 영향)

  • Gang, Sin-Il;Kim, Yeong-Min;Seong, Gi-Byeong;Lee, Jun-Seok;Lee, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.631-636
    • /
    • 2002
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage devices with high storage density using blue laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates for quality recording and read-out. In the present research, the effects of mold temperature and the insulation layer thickness on gapwise birefringence and the land-groove pattern were investigated. It was found that the values of the birefringence distribution were very sensitive to mold temperature history, and the level of birefringence reduced and, furthermore, the quality of replication was improved due to the insulation layer.

Evaluation on Effect of Constitution of Timber Framed Floor on Insulation Performance Against Impact Sound by Field Measurements (현장실험을 통한 목조바닥의 구성요소가 충격음 차단성능에 미치는 영향 평가)

  • Park, Joo-Saeng;Lee, Sang-Joon;Kim, Se-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.431-444
    • /
    • 2012
  • Constituents of timber framed floor affect the insulation performance against impact sound significantly. Among them, installation of massive sound absorbing layer and reinforcement of stiffness of timber floor have been considered as major factors that improve the insulation performance against impact sound. Researches on evaluating the effect of floor constitutions have been carried out through the field measurements for timber framed buildings in Korea. It is concluded that the impact sound pressure level at the relatively lower frequency governs the overall insulation performance, and can be improved by the installation of sound absorbing layer and reinforcement of floor stiffness. Especially, the insulation performance against heavy impact sound was improved significantly when the massive cement mortar layer for floor heating system was installed and the stiffness was reinforced by shortening the joist span using additional beam at the mid-position of original span.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.